

Figure 10 : Carte des sols (Source : Fond de carte Géoportail)

Bgp200/12

Usage

D'après la base de données Corine Land Cover 2018, le site est utilisé pour un usage de stockage de matériaux.

Dans la méthodologie présentée dans le guide, on retient quatre types d'usages majoritaires : forestier, agricole, urbain et industriel :

- milieu Forestier: « Terre avec un couvert arboré (ou une densité de peuplement) supérieur à 10 pour cent et d'une superficie supérieure à 0,5 hectare (ha). Les arbres doivent être capables d'atteindre une hauteur minimum de 5 m à maturité in situ »,
- milieu Agricole (rural) : le terme de milieu rural (ou campagne) correspond « aux espaces cultivés, aux prairies, aux fermes, aux voies de communication »,
- milieu Industriel: « Zones recouvertes artificiellement (zones cimentées, goudronnées, asphaltées ou stabilisées: terre battue, par exemple), sans végétation occupant la majeure partie du sol. Ces zones comprennent aussi des bâtiments et / ou de la végétation »,
- milieu Urbain: « La notion d'unité urbaine repose sur la continuité du bâti et le nombre d'habitants.
 On appelle unité urbaine une commune ou un ensemble de communes présentant une zone de bâti continu (pas de coupure de plus de 200 mètres entre deux constructions) qui compte au moins 2 000 habitants ».

L'usage présent et majoritaire est ainsi industriel.

Profondeur d'étude

L'objectif est de comparer des données se rapportant à des horizons similaires de même type de sol en vue de mettre en évidence ou non une différence de degré de contamination.

Dans le cas de terrains artificiels s'étendant sur de grandes surfaces le guide préconise d'échantillonner comme dans le terrain naturel, c'est-à-dire en différenciant (si possible) les lithologies et en prélevant sur toute la hauteur de chacune d'entre elles dans la limite de **50 cm à 1 m.**

D'après la coupe lithologique établie sur le site, et la profondeur de l'ancienne carrière, la profondeur d'étude a été définie jusqu'environ 1 m de profondeur pour caractériser le fond géochimique des sols à proximité (formation à dominance schisto-calcaire de la série de Montagny).

2.2.3.2 Etape 2 : Collecte et acquisition de données

Collecte de données existantes

Les bases de données disponibles sont les suivantes :

• INRA 2004 à l'échelle nationale, INDIQUASOL à échelle locale (seuils hauts) et FOREGS à échelle locale (seuils hauts), présentées dans le tableau suivant :

Tableau 3 : Valeurs de référence pour les métaux sur brut

ETM	Unité	Valeurs INRA 2004 échelle nationale – "seuils hauts sol ordinaire"	Valeurs INDIQUASOL - Seuils hauts	Valeurs FOREGS - Seuils hauts
antimoine	mg/kg MS	*		1.05
arsenic	mg/kg MS	25	*	12.5
baryum	mg/kg MS	*	*	310
cadmium	mg/kg MS	0,45	0.46	0.26
chrome	mg/kg MS	90	86.6	76
cuivre	mg/kg MS	20	27.82	17.5
mercure	mg/kg MS	0,1	•	0.07
plomb	mg/kg MS	50	47.7	33
molybdène	mg/kg MS	•	0.82	0.6
nickel	mg/kg MS	60	32.05	26
sélénium	mg/kg MS		•	•
zinc	mg/kg MS	100	79.93	52

pas de valeur de référence disponible

• Données BDETM (Base de Données Eléments Trace métallique France) :

Tableau 4 : Données BDETEM - Statistiques descriptives - Eléments Traces Métalliques - France entière (toutes méthodes d'extraction)

France	Cd	Cr	Cu	Ni	Pb	Zn
Nombre de valeurs	71738	72989	72845	73201	72985	72785
Vibrisse inférieure	< 0	< 0	< 0	< 0	< 0	< 0
Nb d'outliers inférieurs	0	0	0	0	0	0
Minimum	0,001	0,02	0,016	0,01	0,05	0,005
1er décile	0,12	19,4	6,9	9,1	13,2	33,3
1er quartile	0,19	28,1	9,6	14,0	16,6	44,4
Médiane	0,28	38,3	13,3	19,5	21,7	56,4
3ème quartile	0,40	49,9	18,4	26,5	28,5	72,2
9ème décile	0,60	64,3	26,0	36,0	37,6	93,8
Maximum	22,10	2262,0	1442,0	1333,4	2434,0	9956,0
Distance interquartile	0,21	21,8	8,8	12,5	11,9	27,8
Vibrisse supérieure	0,72	82,6	31,6	45,3	46,4	113,9
Nb d'outliers supérieurs	4065	2578	4347	3222	3572	3496
%	5,67%	3,47%	5,99%	4,34%	4,95%	4,84%

Nombre de valeurs	57453	9096
Minimum	0,0001	0,002
1er décile	0,02	0,11
1er quartile	0,03	0,15
Médiane	0,046	0,21
3ème quartile	0,07	0,30
9ème décile	0,11	0,50
Maximum	25,35	9,20
Distance interquartile	0,04	0,15
Vibrisse supérieure	0,13	0,52
Nb d'outliers supérieurs	4240	649
%	7,3 %	7,4 %

France (diverses méthodes)

Réf : CDMCCE203823 / RDMCCE02488-02 AURE / DVB-ATR / JMB 04/09/2020 Page 18/59

• INRA-ASPITET (Apports d'une Stratification Pédologique pour l'Interprétation des Teneurs en Eléments Traces), à l'échelle nationale :

Tableau 5 : Base de données ASPITET

Les gammes de valeurs présentées ci-dessous mg/kg. Les numéros entre parenthèses renvoient à des types de sols effectivement analysés, succinctement décrits et localisés ci-dessous.

Métaux et Métalloïde	Gamme de valeurs couramment observées dans les sols "ordinaires" de toutes granulométries	Gamme de valeurs observées dans le cas d'anomalies naturelles modérées	Gamme de valeurs observées dans le cas de fortes anomalies naturelles
As	1,0 à 25,0	30 à 60 (1)	60 à 284 (1)
Cd	0,05 à 0,45	0,70 à 2,0 (1)(2)(3)(4)	2,0 à 46,3 (1)(2)(4)
Cr	10 à 90	90 à 150 (1)(2)(3)(4)(5)	150 à 3180 (1)(2)(3)(4)(5)(8)(9)
Со	2 à 23	23 à 90 (1)(2)(3)(4)(8)	105 à 148 (1)
Cu	2 à 20	20 à 62 (1)(4)(5)(8)	65 à 160 (8)
Hg	0,02 à 0,10	0,15 à 2,3	
Ni	2 à 60	60 à 130 (1)(3)(4)(5)	130 à 2076 (1)(4)(5)(8)(9)
Pb	9 à 50	60 à 90 (1)(2)(3)(4)	100 à 10180 (1)(3)
Se	0,10 à 0,70	0,8 à 2,0 (6)	2,0 à 4,5 (7)
П	0,10 à 1,7	2,5 à 4,4 (1)	7,0 à 55,0 (1)
Zn	10 à 100	100 à 250 (1)(2)	250 à 11426 (1)(3)

- (1) zones de "métallotectes" à fortes minéralisations (à plomb, zinc, barytine, fluor, pyrite, antimoine) au contact entre bassins sédimentaires et massifs cristallins. Notamment roches liasiques et sols associés de la bordure nord et nord-est du Morvan (Yonne, Côte d'Or).
- (2) sols argileux développés sur certains calcaires durs du Jurassique moyen et supérieur (Bourgogne, Jura).
- (3) paléosols ferrallitiques du Poitou ("terres rouges").
- (4) sols développés dans des "argiles à chailles" (Nièvre, Yonne, Indre).
- (5) sols limono-sableux du Pays de Gex (Ain) et du Plateau Suisse.
- (6) "bornais" de la région de Poitiers (horizons profonds argileux).
- (7) sols tropicaux de Guadeloupe.
- (8) sols d'altération d'amphibolites (région de La Châtre Indre).
- (9) matériaux d'altération d'amphibolites (région de La Châtre Indre).

Pour l'étude, les seuils retenus sont ceux de l'INRA-ASPITET car cette base de données contient le plus grand nombre de valeurs pour les métaux, y compris des valeurs observées dans le cas d'anomalies fortes et modérées.

Pour les paramètres Baryum et Antimoine, qui ne sont pas intégrés dans la base de données INRA-ASPITET, les seuils FOREGS ont été retenus, en l'absence de seuils INDIQUASOL et INRA.

Informations minimales requises sur les prélèvements

Choix des substances à caractériser

Comme indiqué dans la norme ISO 19 258, toute substance peut potentiellement faire l'objet d'une mise en place de valeurs de fonds.

Toutefois, en lien avec la nouvelle méthodologie de valorisation hors site des terres excavées issues de sites et sols potentiellement pollués, une liste de substances est proposée dans le guide pour assurer une cohérence entre les différents territoires à l'échelle nationale (cf. **Tableau 6**):

Tableau 6 : Substances proposées et présence avérée dans les différents types de fonds

Famille	Substance à analyser (analyse en contenu total)	Présence dans	les différents l	Fonds
		Fond Géochimique	Fond pédo- géochimique naturel	Fond pédo- géochimique anthropisé
	As	Х	Х	X
	Ba	Х	Х	X
	Cd	Х	Х	X
	Cr	Х	Х	X
	Cu	Х	Х	X
	Hg	Х	Х	X
Inorganiques	Мо	Х	Х	X
	Ni	Х	Х	X
	Pb	Х	Х	X
	Sb	Х	Х	X
	Se	Х	Х	Х
	Zn	Х	Х	X
	PCB	Non	X/Non *	X
Composés organiques	PCDD/PCDF (Dioxines/furanes)	Non	X/Non *	Х
persistants	HAP	Non	X/Non *	Х
	HCT C10-C40	Non	X/Non *	Х

^{* :} dans le cas où des substances spécifiques au site ou au déchet (suspicion de pollution) sont identifiées, il convient de compléter les substances précédemment listées avec ces substances.

Par ailleurs, la caractérisation des déchets en vue de leur stockage en remblaiement de carrière doit répondre à l'Arrêté Ministériel du 12/12/2014.

Cet arrêté précise que les conditions d'utilisation de déchets pour le remblaiement de carrières sont : « les déchets d'extraction inertes, qu'ils soient internes ou externes, sous réserve qu'ils soient compatibles avec le fond géochimique local ».

Les analyses chimiques en contenu total permettent d'évaluer la compatibilité des déchets avec le fond géochimique local.

Elles indiquent les teneurs en polluants contenus dans les matériaux initiaux et permettent de déterminer quels sont les polluants à surveiller dans la suite de la caractérisation environnementale des déchets.

Une campagne de prélèvements de sol a été réalisée par BURGEAP le 02/04/2020. Les paramètres analysés sont les suivants :

- Pack ISDI conformément à l'arrêté du 12/12/2014 incluant :
 - A) sur brut : hydrocarbures C10-C40, BTEX (Benzène, Toluène, Ethylbenzène, Xylènes), PCB (Polychlorobiphényles : 7 congénères), HAP (Hydrocarbures Aromatiques Polycycliques : 16 congénères), COT (carbone Organique Total),
 - B) sur éluat : métaux (12 principaux), indice phénol, fluorures, chlorures, sulfates, fraction soluble, COT
- Pack 12 métaux lourds sur brut (Arsenic As, Baryum Ba, Cadmium Cd, Chrome total Cr, Cuivre Cu, Mercure Hg, Molybdène Mo, Nickel Ni, Plomb Pb, Antimoine Sb, Sélénium Se et Zinc Zn).

Les éléments analysés correspondent aux substances proposées par le guide ADEME.

Profondeur et remblais

Il a été démontré que les valeurs de fonds fluctuent en fonction des couches du sol et du sous-sol.

Les préconisations sont d'établir des valeurs de fond sur 3 niveaux :

- fond pédo-géochimique anthropisé (horizon humifère de surface impacté par les dépôts aériens diffus);
- fond pédo-géochimique naturel (horizon peu humifère non situé en surface);
- fond géochimique (matériau parental roche non altérée).

La profondeur d'étude sera déterminée en fonction de la profondeur des casiers ou de la carrière à remblayer. Pour déterminer un fond pédo-géochimique anthropisé dans les zones remblayées, le guide de l'ADEME propose de retenir différentes hypothèses :

- respecter une surface minimale homogène et de grande envergure.
 - 1 hectare en milieu artificialisé situé en milieu urbain ou industriel,
 - 25 hectares en milieu agricole et forestier (ex : voie de communication, gravière remblayée...) ;
- les matériaux doivent présenter une typologie similaire (ex. : sables de rivière, terre arable parsemée de morceaux de briques, etc.) ;
- vérifier qu'il existe une empreinte chimique ou physico-chimique cohérente et relativement homogène sur le même volume de matériau. En d'autres mots il faut mettre en évidence une population statistique de concentrations cohérentes ;
- respecter la proportion de moins de 20 % de matériaux anthropiques (transformés par l'homme) dans le sol. Le matériau doit être majoritairement composé de sol et ne pas rentrer dans la définition d'un technosol tel que décrit par la FAO⁴. C'est-à-dire qu'il doit contenir moins de 20 % d'artéfacts (en volume);
- si contamination, démontrer le caractère diffus et multi-sources. C'est-à-dire, démontrer l'absence d'une seule source de contamination du volume de remblais (ex. : scories, déblais miniers, briques imprégnées d'hydrocarbures, mâchefers, etc.). Démontrer également l'absence de risques sanitaires et environnementaux.

Réf: CDMCCE203823 / RDMCCE02488-02 AURE / DVB-ATR / JMB 04/09/2020 Page 21/59

⁴ IUSS Working Group WRB, 2015

Dans le cadre du projet, les échantillons ont été prélevés sur une surface de l'ordre de 8 300 m² (0,83 ha) (se reporter en Figure 11), ce qui est conforme aux recommandations du guide ADEME (site en milieu urbain ou artificialisé supérieur à 1 ha).

Des photographies des sondages sont présentées en pages suivantes.

Figure 11 : Surface minimale de prélèvements (Source : fond de plan Géoportail)

Photographie 1 : Sondage FG1 – Vue 1

Photographie 3 : Sondage FG2 - Vue 1

Photographie 5 : Sondage FG3 – Vue 1

Photographie 2 : Sondage FG1 – Vue 2

Photographie 4 : Sondage FG2 – Vue 2

Photographie 6 : Sondage FG4 – Vue 1

Photographie 7 : Sondage FG5 – Vue 1

Photographie 8 : Sondage FG6 - Vue 1

Photographie 9 : Sondage FG6 – Vue 2

2.2.3.3 Lieux de prélèvement

Les lieux de prélèvement témoins doivent se trouver idéalement à proximité du site étudié et si possible dans un rayon d'un kilomètre autour de ce dernier.

Pour assurer une bonne comparaison au(x) autre(s) site(s) de prélèvement de l'étude, les lieux de prélèvement doivent :

- présenter les mêmes caractéristiques géologiques et pédologiques, ainsi que le même usage et le même âge ;
- se trouver en dehors de l'influence directe d'une source potentielle de pollution locale telle qu'un site industriel (en activité ou ancien), un axe routier à fort trafic, une zone de dépôt de déchets ou encore une carrière.

Les prélèvements de sol sont localisés sur la **Figure 12.** La zone à remblayer s'étend sur une superficie de 39 160 m².

La Figure 13 présente la superposition des sondages avec la carte géologique.

Les coordonnées GPS des points de prélèvements sont les suivantes :

Tableau 7 : Coordonnées GPS des sondages (Lambert 93)

Lambert 93	FG1	FG2	FG3	FG4	FG5	FG6
X (en m)	799055,25	799051,82	799041,53	799179,02	799167,36	799144,25
Y (en m)	6549886,34	6550002,33	6549938,96	6549949,03	6549959,78	6549973,05

Les six prélèvements sont localisés au sein d'un secteur présentant les mêmes caractéristiques géologiques, qui est relativement homogène à l'échelle du site (formations à dominance schisto-calcaire de la série de Montagny), et en dehors de toute source potentielle de pollution.

Figure 12 : Localisation des sondages de fond géochimique (Source : Fond de carte Géoportail)

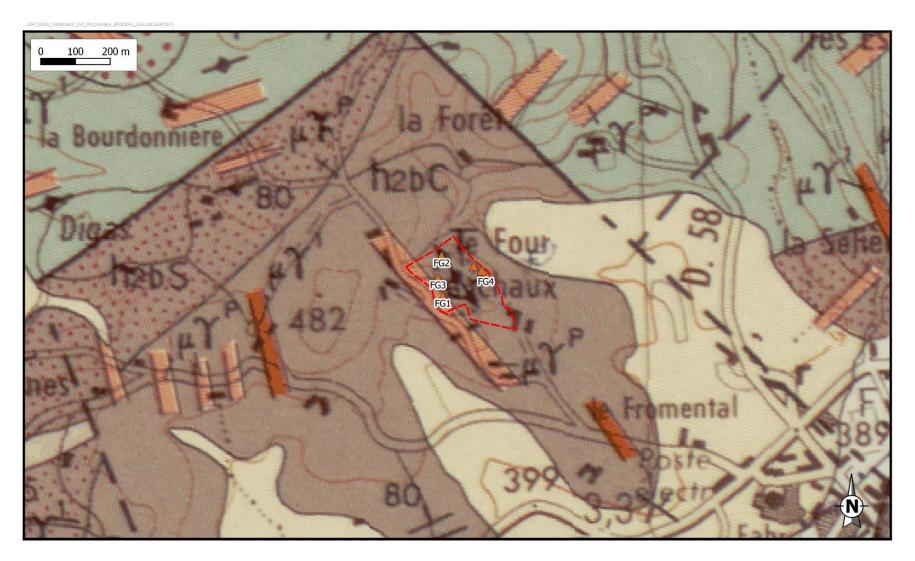


Figure 13 : Localisation des sondages sur fond géologique (Source : Fond de carte Infoterre)

Nombre de point de prélèvements et plan d'échantillonnage

Selon l'ADEME, pour une étude à l'échelle d'un site, le nombre de données à acquérir (par niveau de sol étudié) est, a minima, de 3, mais un effectif de 8 à 10 est souhaitable. Le nombre de données collectées doit être proportionnel à la taille du site et aux enjeux associés.

Le nombre minimal de sondages recommandé par le BRGM est d'un sondage par hectare de zone de stockage, avec un minimum de trois sondages pour des projets de surface inférieure ou égale à 3 ha.

Dans le cadre du projet, il a été réalisé 6 prélèvements, ce qui est supérieur à l'effectif souhaitable.

Le ratio d'un sondage/hectare est respecté (la zone de remblaiement s'étend sur une surface de l'ordre de 3,9 ha).

Pour mémoire, un seul niveau de sol a été considéré du fait du caractère homogène de la géologie du site.

Campagne de prélèvement

Autant que possible, les prélèvements de sol devront être réalisés selon les protocoles des référentiels auxquels les résultats seront comparés ultérieurement. Par exemple les modalités de prélèvements des sols témoins doivent être cohérentes avec celles mises en œuvre lors de l'interprétation des milieux qui a été faite (INERIS, 2017).

Description du lieu de prélèvement

Une fiche d'échantillonnage des sols a été réalisée pour chaque prélèvement (se reporter à l'Annexe 1).

Prélèvement des échantillons

Les six échantillons ont été prélevés le 02/04/2020 par BURGEAP. Il a été réalisé un échantillon par couche pédologique, tous les échantillons appartenant au même horizon.

Type de prélèvement

Les caractéristiques des échantillons sont les suivantes :

FG1 à FG6 : formations à dominance schisto-calcaire de la série de Montagny.

Les masses de chaque échantillon sont précisées dans le tableau suivant.

Tableau 8 : Masse des échantillons (en kg)

Echantillon	FG1	FG2	FG3	FG4	FG5	FG6
Masse (en kg) de l'échantillon total inférieur 2 kg	0,67	0,59	0,64	0,62	0,57	0,66

Profondeur de prélèvement

S'agissant de roches dures, les échantillons ont été prélevés sur les fronts de taille (jusqu'à 1 mètre), à l'aide d'un marteau de géologue. Les fronts de taille sont constitués de formations à dominance schisto-calcaire.

Préparation sur site : Prétraitement pour le laboratoire, Conditionnement, Demande d'analyses

Après conditionnement dans les flacons fournis par le laboratoire AGROLAB et étiquetage, les échantillons de sols ont été stockés en glacière jusqu'à leur arrivée au laboratoire. Le délai de transport n'a pas excédé 48 h. Les méthodes d'analyse ainsi que les limites de quantification sont reportées dans le **Tableau 9** cidessous.

Tableau 9 : Méthodes analytiques et limites de quantification

	Limit d.	Incert.	
Unité	Quant	Résultat %	Méthode

Lixiviation				
Lixiviation (EN 12457-2)				NF EN 12457-2
Prétraitement des échantillor	าร		-	
Masse échantillon total inférieure à 2 kg	kg	0		
Prétraitement de l'échantillon	ng .			Conforme à NEN-EN 16179
Broyeur à mâchoires				méthode interne
Matière sèche	%	0,01	+/- 1	NEN-EN15934; EN12880
Calcul des Fractions soluble	s			
Antimoine cumulé (var. L/S) *	mg/kg Ms	0.05		
Arsenic cumulé (var. L/S) *	mg/kg Ms	0,05		
Baryum cumulé (var. L/S) *	mg/kg Ms	0,1		
Cadmium cumulé (var. L/S) *	mg/kg Ms	0,001		
Chlorures cumulé (var. L/S) *	mg/kg Ms	1		
Chrome cumulé (var. L/S) *	mg/kg Ms	0,02		
COT cumulé (var. L/S) *	mg/kg Ms	10		selon norme lixiviation
Cuivre cumulé (var. L/S) *	mg/kg Ms	0,02		
Fluorures cumulé (var. L/S) *	mg/kg Ms	1		selon norme lixiviation
Fraction soluble cumulé (var. L/S) *	mg/kg Ms	1000		
Indice phénol cumulé (var. L/S) *	mg/kg Ms	0,1		
Mercure cumulé (var. L/S) *	mg/kg Ms	0,0003		
Molybdène cumulé (var. L/S) *	mg/kg Ms	0,05		
Nickel cumulé (var. L/S) *	mg/kg Ms mg/kg Ms	0,05		
Plomb cumulé (var. L/S) * Sélénium cumulé (var. L/S) *	mg/kg Ms	0,05 0,05		
Sulfates cumulé (var. L/S) *	mg/kg Ms	50		
Zinc cumulé (var. L/S) *	mg/kg Ms	0,02		
Analyses Physico-chimiques		0,02		
pH-H2O	<u> </u>	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
COT Carbone Organique Total	mg/kg Ms	1000	+/- 16	conforme ISO 10694 (2008)
Prétraitement pour analyses	des métaux			
Minéralisation à l'eau régale				NF-EN 16174; NF EN 13657
Métaux				(déchets)
		1		1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Antimoine (Sb)	mg/kg Ms	0,5		Conforme à EN-ISO 11885, EN 16174
Arsenic (As)	mg/kg Ms	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Baryum (Ba)	mg/kg Ms	1	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	0,05		Conforme à ISO 16772 et EN 16174
Molybdène (Mo)	mg/kg Ms	1		Conforme à EN-ISO 11885, EN 16174
Nickel (Ni)	mg/kg Ms	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Sélénium (Se)	mg/kg Ms	1	+/- 16	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	1	+/- 22	Conforme à EN-ISO 11885, EN 16174

Hydrocarbures Aromatiques Polycycliques (ISO)

Naphtalène	mg/kg Ms	0,05	équivalent à CEN/TS 16181
Acénaphtylène	mg/kg Ms	0,05	équivalent à CEN/TS 16181
Acénaphtène	mg/kg Ms	0.05	équivalent à CEN/TS 16181
Fluorène	mg/kg Ms	0,05	équivalent à CEN/TS 16181
Phénanthrène	mg/kg Ms	0,05	équivalent à CEN/TS 16181
Anthracène	mg/kg Ms	0,05	équivalent à CEN/TS 16181
Fluoranthène	mg/kg Ms	0,05	équivalent à CEN/TS 16181
Pyrène	mg/kg Ms	0,05	équivalent à CEN/TS 16181
Benzo(a)anthracène	mg/kg Ms	0,05	équivalent à CEN/TS 16181
Chrysène	mg/kg Ms	0,05	équivalent à CEN/TS 16181
Benzo(b)fluoranthène	mg/kg Ms	0,05	équivalent à CEN/TS 16181
Benzo(k)fluoranthène	mg/kg Ms	0,05	équivalent à CEN/TS 16181
Benzo(a)pyrène	mg/kg Ms	0,05	équivalent à CEN/TS 16181
Dibenzo(a,h)anthracène	mg/kg Ms	0,05	équivalent à CEN/TS 16181
Benzo(g,h,i)pérylène	mg/kg Ms	0,05	équivalent à CEN/TS 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	0.05	équivalent à CEN/TS 16181
HAP (6 Borneff) - somme	mg/kg Ms	,	équivalent à CEN/TS 16181
Somme HAP (VROM)	mg/kg Ms		équivalent à CEN/TS 16181
HAP (EPA) - somme	mg/kg Ms		équivalent à CEN/TS 16181
Composés aromatiques			
Benzène	mg/kg Ms	0,05	Conforme à ISO 22155
Toluène	mg/kg Ms	0,05	Conforme à ISO 22155
Ethylbenzène	mg/kg Ms	0,05	Conforme à ISO 22155
m,p-Xylène	mg/kg Ms	0,1	Conforme à ISO 22155
o-Xylène	mg/kg Ms	0,05	Conforme à ISO 22155
Somme Xylènes	mg/kg Ms	0,00	Conforme à ISO 22155
BTEX total *	mg/kg Ms		Conforme à ISO 22155
COHV			
Chlorure de Vinyle	mg/kg Ms	0,02	Conforme à ISO 22155
Dichlorométhane	mg/kg Ms	0,05	Conforme à ISO 22155
Trichlorométhane	mg/kg Ms	0,05	Conforme à ISO 22155
Tétrachlorométhane	mg/kg Ms	0,05	Conforme à ISO 22155
Trichloroéthylène	mg/kg Ms	0,05	Conforme à ISO 22155
Tétrachloroéthylène	mg/kg Ms	0,05	Conforme à ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	0,05	Conforme à ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	0,05	Conforme à ISO 22155
1,1-Dichloroéthane	mg/kg Ms	0,1	Conforme à ISO 22155
1,2-Dichloroéthane	mg/kg Ms	0,05	Conforme à ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	0,025	Conforme à ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	0,1	ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	0,025	Conforme à ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms		Conforme à ISO 22155
Hydrocarbures totaux (ISO)			
Hydrocarbures totaux C10-C40	mg/kg Ms	20	ISO 16703
Fraction C10-C12 *	mg/kg Ms	4	ISO 16703
Fraction C12-C16 *	mg/kg Ms	4	ISO 16703
Fraction C16-C20 *	mg/kg Ms	2	ISO 16703
Fraction C20-C24 *	mg/kg Ms	2	ISO 16703
Fraction C24-C28 *	mg/kg Ms	2	ISO 16703
Fraction C28-C32 *	mg/kg Ms	2	ISO 16703
Fraction C32-C36 *	mg/kg Ms	2	ISO 16703
Fraction C36-C40 *	mg/kg Ms	2	ISO 16703

Polychlorobiphényles		_	
Somme 6 PCB	mg/kg Ms		NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms		NEN-EN 16167
PCB (28)	mg/kg Ms	0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	0,001	NEN-EN 16167
PCB (101)	mg/kg Ms	0,001	NEN-EN 16167
PCB (118)	mg/kg Ms	0,001	NEN-EN 16167
PCB (138)	mg/kg Ms	0,001	NEN-EN 16167

OOIIIIIC OT CD	mg/kg ms	.		INLIN-LIN TOTO!
Somme 7 PCB (Ballschmiter)	mg/kg Ms			NEN-EN 16167
PCB (28)	mg/kg Ms	0,001		NEN-EN 16167
PCB (52)	mg/kg Ms	0,001		NEN-EN 16167
PCB (101)	mg/kg Ms	0,001		NEN-EN 16167
PCB (118)	mg/kg Ms	0,001		NEN-EN 16167
PCB (138)	mg/kg Ms	0,001		NEN-EN 16167
PCB (153)	mg/kg Ms	0,001		NEN-EN 16167
PCB (180)	mg/kg Ms	0,001		NEN-EN 16167
Analyses sur éluat après lixiv	iation			
L/S cumulé	ml/g	0,1		selon norme lixiviation
Conductivité électrique	μS/cm	5	+/- 10	selon norme lixiviation
pH		0	+/- 5	selon norme lixiviation
Température	°C	0		selon norme lixiviation
Analyses Physico-chimiques	sur éluat			
Résidu à sec	mg/l	100		Equivalent à NF EN ISO 15216
Fluorures (F)	mg/l	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
Indice phénol	mg/l	0.01		EN-ISO 16192

Résidu à sec	mg/l	100		Equivalent à NF EN ISO 15216
Fluorures (F)	mg/l	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
Indice phénol	mg/l	0,01		EN-ISO 16192
Chlorures (CI)	mg/l	0,1	+/- 10	Conforme à ISO 15923-1
Sulfates (SO4)	mg/l	5	+/- 10	Conforme à ISO 15923-1
COT	mg/l	1	+/- 10	conforme EN 16192
Métaux our éluet				

00.	9		1 10	00111011110 E11 10102
Métaux sur éluat			•	
Antimoine (Sb)	μg/l	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	5		Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	10		Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	µg/l	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	µg/l	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	µg/l	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure (Hg)	μg/l	0,03		NEN-EN 1483 (2007)
Molybdène (Mo)	μg/l	5		Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	µg/l	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	2		Conforme à EN-ISO 17294-2

2.2.3.4 Etape 3: Interprétation

L'interprétation des données est réalisée en combinant les teneurs issues des bases de données et celles issues des analyses sur prélèvements.

Le mode d'interprétation des données dépend du nombre de données disponibles.

Les prélèvements ayant été réalisés sur les mêmes horizons, nous avons donc réalisé une approche « typologique ».

Compte tenu du nombre de données disponibles, il a été adopté une interprétation par **analyse graphique**, qui est un mode de traitement de données adapté pour un petit effectif (si $n < 30^5$).

Si le nombre de valeurs est insuffisant pour un traitement statistique, la valeur médiane des valeurs mesurées est alors retenue comme valeur de fond, après exclusion d'éventuelles valeurs anormales.

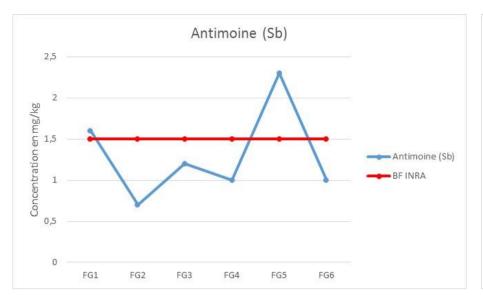
Analyse graphique

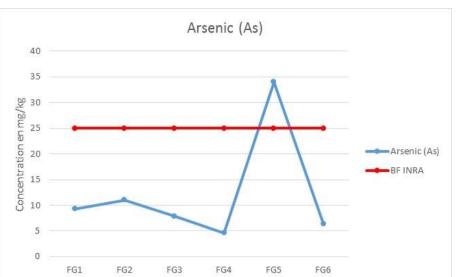
Les résultats d'analyses sont présentés dans le **Tableau 10.** Les bordereaux d'analyses sont disponibles en **Annexe 2**.

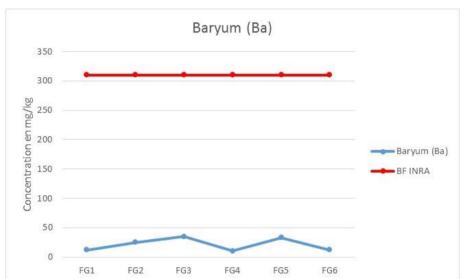
Chaque échantillon moyen prélevé a fait l'objet d'une analyse en laboratoire, à la fois sur brut et sur éluat. Les graphiques ci-après présentent les résultats d'analyses des métaux sur brut.

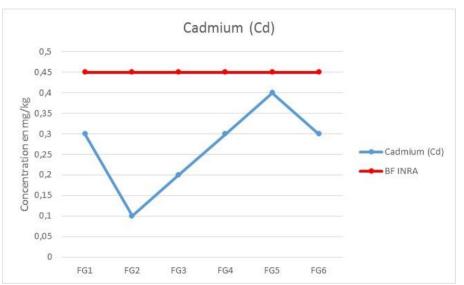
Il convient de comparer, pour chaque substance, les teneurs des déchets apportés en ISDI ou en remblaiement de carrière avec les valeurs de fonds des sols en place selon la profondeur.

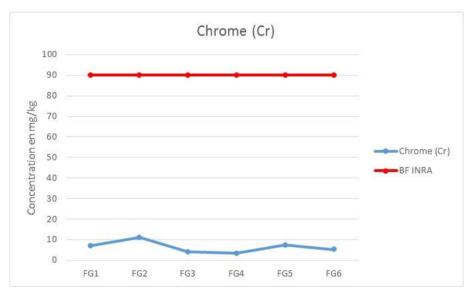
Le bruit de fond indiqué en rouge dans les graphiques est issu des « Teneurs totales en éléments traces métalliques dans les sols, Denis BAIZE, INRA » du programme INRA-ASPITET.

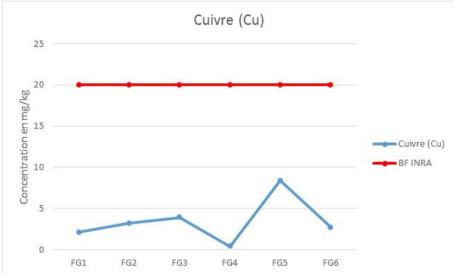

Pour l'Antimoine (Sb) et le Baryum (Ba), les concentrations sont comparées aux valeurs de la base de données FOREGS

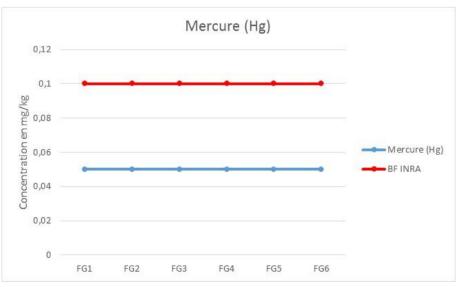

Pour le Molybdène (Mo), aucun seuil de bruit de fond n'est disponible.

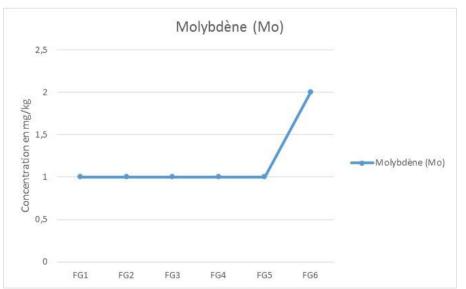

Réf : CDMCCE203823 / RDMCCE02488-02 AURE / DVB-ATR / JMB 04/09/2020 Page 32/59

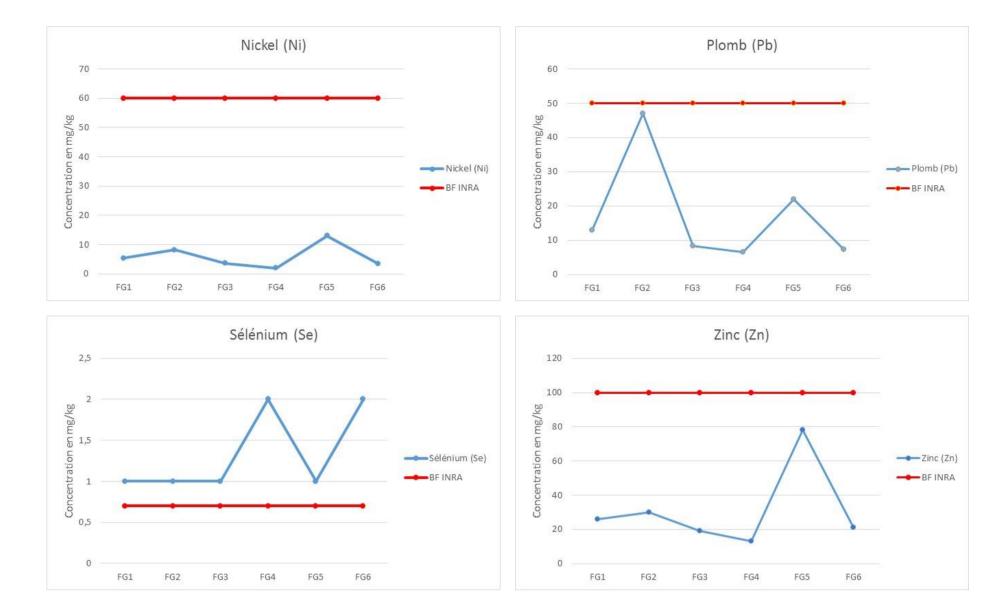

⁵ Il est considéré qu'il faut un nombre minimal de 30 données pour réaliser des analyses statistiques.











Remarque : lorsque la concentration obtenue est inférieure au seuil de détection du laboratoire, il a été considéré que cette valeur était égale au seuil de détection pour la représentation graphique.

Tableau 10 : Résultats d'analyses du fond géochimique du 02/04/2020

Martin M				T				Sondage	FG1	FG2	FG3	FG4	FG5	FG6
The control of the				couramment observées	observées dans le cas	observées dans le cas		Profondeur (m)	0-1 m	0-1 m			0-1 m	0-1 m
The color of the first of the color of the			(**)						-	-	Schiste-	-caicaire -	-	_
Section Control Cont	ANALYSES SUR SOL BRUT													
The content		%	-				-		99,6	98,4	99,8	99,8	99	99,6
Second 19		mg/kg Ms	-				30000		1700	13000	2200	<1000	<1000	1200
Separation	Antimoine (Sb)									,				
Came Color	Baryum (Ba)	mg/kg Ms	310				Résultats de		12	25	35	10	33	12
Company Comp	, ,	mg/kg Ms	i i				lixiviation			·			,	
Proceedings	· ·						seuils définis							
Manufact		mg/kg Ms	0,1	0,02 à 0,10			déchets		<0,05	<0,05		<0,05		<0,05
Search S			60	2 à 60	60 à 130 (1)(3)(4)(5)					,	,	·		
The content of the		mg/kg Ms	50			100 à 10180 (1)(3)	28/10/10		13	47	8,4	6,6	22	7,4
Transport Color	Zinc (Zn)													
Transport Color		mg/kg Ms	LQ				-		- <4,0	<4,0	<4,0	- <4,0	<4,0	<4,0
Patter Color Col														
Particle (CCC)	Fraction C20-C24	mg/kg Ms	LQ				-		<2,0	5,3	<2,0	<2,0	13	2,7
Process (CAC)														
Some desprisonative CLI-CO														
Next all the content of the conten	Somme des hydrocarbures C10-C40						500							
Description	Naphtalène						-							
Present Pres		0. 0												
American		0.0												
Professor Prof	Anthracène	mg/kg Ms							<0,050	<0,050	<0,050	<0,050	<0,050	<0,050
Chypric	Pyrène	mg/kg Ms							<0,050	<0,050	<0,050	<0,050	<0,050	<0,050
International Processing Pr														
Semantic Proceed Procedure Procedu	Benzo(b)fluoranthène	mg/kg Ms							<0,050	<0,050	<0,050	<0,050	<0,050	<0,050
Season Application	Benzo(a)pyrène	mg/kg Ms	-						<0,050	<0,050	<0,050	<0,050	<0,050	<0,050
Somme des NaP														
Breame										-				_
Tobbee	втех								-	-	-	-	-	-
mg-yighte	Toluène	mg/kg Ms	LQ						<0,050	<0,050	<0,050	<0,050	<0,050	<0,050
Oxylene														
Terrachrondethyden (PCE) mg/kg Ms LQ	o-Xylène		LQ				-		<0,050	<0,050	<0,050	<0,050	<0,050	<0,050
Contract Contract	Tétrachloroéthylène (PCE)													
1.1-discharderlyeine mg/kg Ms LQ	cis-1,2-dichloroéthylène		LQ						<0,025	<0,025	<0,025	<0,025	<0,025	<0,025
Choruse mg/kg Ms LQ														
1,1,1-inchionechame	Chlorure de Vinyle	mg/kg Ms	LQ						<0,02	<0,02	<0,02	<0,02	<0,02	<0,02
1.1-dichrodehane mg/kg Ms LQ	1,1,1-trichloroéthane	mg/kg Ms	LQ				-		<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
Trichloromethane (chloroforme) mg/kg Ms Q														
Dichlorom/thane		3/ 3												
FCB (28)	Dichlorométhane													
PCB (101) mg/kg Ms LQ	PCB (28)													
PCB (138)														
FCB (185) mg/kg Ms LQ														
Sommer des PCB	PCB (153)	mg/kg Ms	LQ						<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
Paramètres généraux	Somme des PCB											_		
Conductivité corrigée à 25 °C µS/cm -									<u>-</u>	-	-	-	-	-
Fraction soluble (***) mg/kg M.S 4000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <10000 <1000 <10000 <1000 <10000 <10000 <10000 <10000 <1000	al:													
Indice phénol mg/kg M.S. -	Fraction soluble (***)	mg/kg M.S.	-				4000		<1000	<1000	<1000	<1000	<1000	<1000
Fluorures mg/kg M.S. - 10 2 4 1 2 3 2 2 2 2 2 3 2 2														
Chlorures (***) mg/kg M.S. - 800 19 17 18 22 18 22 22 38 22 38 22 38 32 32		mg/ka M.S.	-				10		2	4	1	2	3	2
Métaux et métalloides -	Chlorures (***)	mg/kg M.S.	-				800		19	17	18	22	18	22
Arsenic mg/kg M.S. - 0,5 <0,05 0,08 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,01 <0,10 <0,10 <0,10 <0,10 <0,01 <0,01 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,002 <0,02 <0,02 <0,02 <0,02 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003	Métaux et métalloïdes									-	-	-	-	-
Baryum mg/kg M.S. - 20 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,002 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <														
Chrome mg/kg M.S. - 0,5 0,03 0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,00 <0,003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003	Baryum	mg/kg M.S.					20		<0,10	<0,10	0,16	<0,10	<0,10	<0,10
Mercure mg/kg M.S. - 0,01 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,0003 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005	Chrome	mg/kg M.S.	-				0,5		0,03	0,02	<0,02	<0,02	0,02	<0,02
Molybdène mg/kg M.S. - 0,5 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05	Mercure	mg/kg M.S.					0,01		<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003
Plomb mg/kg M.S. - 0,5 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 <0,02		mg/kg M.S.	-											
	Plomb	mg/kg M.S.	-				0,5		<0,05	<0,05	<0,05	<0,05	<0,05	<0,05

<u>Légende :</u>

- (*) Pour l'acceptation en ISDI, une valeur limite plus élevée peut être admise, à condition que la valeur limite de 500 mg/kg de matière sèche soit respectée pour le carbone organique total sur éluat, soit au pH du sol, soit pour un pH situé entre 7,5 et 8,0.
- (**) Valeurs en gras : source = Teneurs totales en éléments traces métalliques dans les sols, Denis BAIZE, INRA. En italique : source = ATSDR
- (***) Si le déchet ne respecte pas au moins une des valeurs fixées pour le chlorure, le sulfate ou la fraction soluble, le déchet peut être encore jugé conforme aux critères d'admission s'il respecte soit les valeurs associées au chlorure et au sulfate, soit celle associée à la fraction soluble.

LQ : Limite de quantification du laboratoire

<u>Légende:</u>

- (1) zones de « métallotectes » à fortes minéralisations (à Plomb, Zinc, Barytine, Fluor, Pyrite, Antimoine) au contact entre bassins sédimentaires et massifs cristallins. Notamment roches liasiques et sols associés de la bordure nord et nord-est du Morvan (Yonne, Côte d'Or).
- (2) sols argileux développés sur certains calcaires durs du Jurassique moyen et supérieur (Bourgogne, Jura).
- (3) paléosols ferrallitiques du Poitou (« terres rouges »).
- (4) sols développés dans des "argiles à chailles" (Nièvre, Yonne, Indre).
- (5) sols limono-sableux du Pays de Gex (Ain) et du Plateau Suisse.
- (6) "bornais" de la région de Poitiers (horizons profonds argileux).
- (7) sols tropicaux de Guadeloupe.
- (8) sols d'altération d'amphibolites (région de La Châtre Indre).
- (9) matériaux d'altération d'amphibolites (région de La Châtre Indre)

Restitution

Ces résultats d'analyses ont mis en évidence :

- la présence de métaux sur sols bruts dans la gamme de bruit fond géochimique ordinaire et systématiquement inférieur au bruit de fond local moyen, excepté pour :
 - l'Antimoine sur les sondages FG1 à FG5 ;
 - l'Arsenic sur le sondage FG5, dans des gammes de valeurs observées dans le cas d'anomalies ordinaires :
- la détection de traces d'hydrocarbures sur le sondage FG5 et de traces de PCB sur les sondages FG3 et FG6 :
- l'absence d'anomalies pour les autres paramètres.

Une analyse statistique a été réalisée sur les six échantillons. Pour information, les valeurs inférieures à la limite de quantification sont considérées égales à cette limite de quantification. Sur l'ensemble de ces données, il ressort les résultats suivants :

Tableau 11 : Analyse statistique des six échantillons de fond géochimique

Paramètres	Valeur moyenne en mg/kg	Valeur minimum en mg/kg	1 ^{er} quartile (25e percentile) en mg/kg	Valeur médiane en mg/kg	3 ^{ème} quartile (75e percentile) en mg/kg	Valeur maximum en mg/kg	Bruit de fond en mg/kg
			Métaux	sur brut			
Antimoine (Sb)	1,3	0,7	1	1,1	1,5	2,3	1,5
Arsenic (As)	12,2	4,6	6,8	8,6	10,6	34	25
Baryum (Ba)	21,2	10	12	18,5	31,0	35	310
Cadmium (Cd)	0,3	0,1	0,3	0,3	0,3	0,4	0,45
Chrome (Cr)	6,3	3,3	4,3	6,2	7,3	11	90
Cuivre (Cu)	3,5	0,4	2,3	3,0	3,7	8,4	20
Mercure (Hg)	0,1	0,1	0,1	0,1	0,1	0,1	0,1
Molybdène (Mo)	1,2	1	1	1,0	1,0	2	-
Nickel (Ni)	6,0	2	3,6	4,6	7,5	13	60
Plomb (Pb)	17,4	6,6	7,7	10,7	19,8	47	50
Sélénium (Se)	1,3	1	1	1,0	1,8	2	0,7
Zinc (Zn)	31,2	13	19,5	23,5	29,0	78	100

Paramètres	Valeur moyenne en mg/kg	Valeur minimum en mg/kg	1 ^{er} quartile (25e percentile) en mg/kg	Valeur médiane en mg/kg	3 ^{ème} quartile (75e percentile) en mg/kg	Valeur maximum en mg/kg	Bruit de fond en mg/kg
	•	•	Métaux	sur éluat	•		
Antimoine (Sb)	0,1	0,05	0,05	0,1	0,1	0,05	-
Arsenic (As)	0,1	0,05	0,05	0,1	0,1	0,08	-
Baryum (Ba)	0,1	0,1	0,1	0,1	0,1	0,16	-
Cadmium (Cd)	0,0	0,001	0,001	0,001	0,00	0,001	-
Chrome (Cr)	0,0	0,02	0,02	0,02	0,02	0,03	-
Cuivre (Cu)	0,0	0,02	0,02	0,02	0,03	0,03	-
Mercure (Hg)	0,0	0,0003	0,0003	0,0003	0,0003	0,0003	-
Molybdène (Mo)	0,1	0,05	0,05	0,1	0,1	0,05	-
Nickel (Ni)	0,1	0,05	0,05	0,1	0,1	0,05	-
Plomb (Pb)	0,1	0,05	0,05	0,1	0,1	0,05	-
Sélénium (Se)	0,0	0,02	0,02	0,02	0,02	0,02	-
Zinc (Zn)	0,1	0,05	0,05	0,1	0.1	0,05	-

Seul le Sélénium présente un dépassement par rapport au fond géochimique national moyen (1 mg/kg pour 0,7 mg/kg). Ce dépassement est expliqué par l'absence de détection du paramètre, et des limites de quantification plutôt élevées (1 et 2 mg/kg). De ce fait l'analyse du Sélénium ne peut pas être conclusif.

Les valeurs de fond géochimique ont pour objectif de caractériser une qualité chimique représentative et habituelle d'un territoire.

Il y a compatibilité des déchets avec le fond géochimique local si la teneur de la substance considérée dans les déchets bruts est inférieure ou dans la même gamme de valeurs que celles mesurées sur les formations géologiques présentes au droit du site.

Il est toléré un dépassement de 20 %, s'il est justifié par les incertitudes sur l'analyse des échantillons⁶.

2.2.3.5 Conclusion

Cette caractérisation du fond géochimique a été réalisée conformément au « Guide de détermination des valeurs de fonds dans les sols – échelle d'un site », de l'ADEME – novembre 2018.

De façon synthétique, le processus de déploiement de la méthodologie comporte trois grandes étapes :

- définition d'une ou de zones (via l'environnement local témoin ou des entités géographiques cohérentes) ;
- acquisition de données (collecte de données existantes et/ou prélèvements sur le terrain);
- interprétation des données.

L'enjeu est la détermination d'un fond géochimique naturel dans le principe de ne pas dégrader la qualité des sols en place en visant a minima la conservation de leur qualité et au mieux leur amélioration.

Dans le cadre du projet, une campagne de sondages a été réalisée le 02/04/2020. Au total, six échantillons répartis sur l'ensemble du site ont été prélevés et analysés.

Ces résultats d'analyses sur brut mettent en évidence l'absence de teneurs « anormales », ainsi que l'absence d'anomalies géochimiques notables par rapport aux valeurs de références connues.

⁶ Guide de valorisation hors site des terres excavées dans des projets d'aménagement – MTES - novembre 2017

2.3 Contexte hydrogéologique

2.3.1 Aquifères en présence

Au droit du site, les formations schisto-calcaires peuvent être le siège d'aquifère. Ces formations sont par nature peu perméables. Seule l'altération et/ou la fracturation de ces formations peut les rendre perméables et leur procurer une capacité de stockage d'eau et/ou favoriser des circulations préférentielles d'eaux souterraines (d'après l'étude hydrogéologique de 2012, cf. **Annexe 3**).

Des formations d'altération se développent sur ces matériaux sédimentaires. Selon la minéralogie et la texture initiale de la roche, les formations d'altération peuvent être plus ou moins argileuses. Plus la formation est argileuse et à grains fins (généralement dans les zones à pente faible), plus sa perméabilité est faible et donc plus sa capacité de stockage est médiocre. L'épaisseur de ces altérites est d'ordre métrique dans la région. Dans les roches non altérées, l'eau ne peut circuler que dans les fissures ouvertes. Ces fissures sont essentiellement présentes près de la surface (entre 50 et 100 m de profondeur) et créent un milieu de conductivité hydraulique variable selon leur degré de colmatage. Les formations d'altération sont en lien hydraulique avec les roches fissurées sous-jacentes.

A proximité du site, les dépôts alluviaux et colluviaux, en recouvrement et comblement dans la vallée de la Trambouze et en pied de versant, sont les principaux aquifères d'importance du secteur.

2.3.2 Points d'eau situés à proximité du site et carte piézométrique de 2012

L'étude hydrogéologique de 2012 (cf. **Annexe 3**) a permis de réaliser un recensement des ouvrages dans les environs du site. Ainsi plusieurs puits particuliers, une source, des plans d'eau artificiels ou non et le puits situé sur le site. L'ensemble de ces ouvrages recensés est localisé sur la **Figure 14**.

D'après l'étude de CPGF-Horizon de 2012, les puits particuliers du secteur sont principalement utilisés pour l'arrosage des jardins. Certains puits permettent la collecte des eaux de pluie. Les profondeurs de ces puits sont faibles (5 à 6 mètres).

La source reconnue alimente un fil d'eau, qui rejoint un étang puis la Trambouze. Elle doit correspondre à une émergence des eaux circulant dans les formations schisto-calcaires altérées.

Une carte piézométrique a été tracée suite aux mesures de nappe du 30/08/2012 (cf. **Annexe 3**). Cette carte est reportée sur la **Figure 14**.

2.3.3 Sens d'écoulement et potentiel de la nappe

Du fait de leur position sommitale, les formations schisto-calcaires aquifères du secteur ne peuvent être alimentées que par les précipitations qui tombent sur le bassin versant. Les eaux s'infiltrent jusqu'à atteindre la roche saine et circulent au droit des fissures ou des altérites jusqu'à être bloquées au contact du rocher sain.

L'esquisse piézométrique du 30/08/2012 (cf. Figure 14), montre que :

- un écoulement des eaux souterraines qui suit la topographie du secteur, avec un gradient compris entre 6 et 15 %;
- au niveau du site, un écoulement de direction ouest-est;
- au droit du site, le niveau d'eau est compris entre les cotes 420 (en aval) et 425 (en amont) m NGF;
- les cours d'eau constituent les exutoires des eaux souterraines du secteur.

D'après la topographie, les terrains en présence et leur pendage, le bassin versant hydrogéologique du projet correspondrait au bassin versant hydrologique : le potentiel « de la nappe » correspondrait à la pluie efficace qui tombe sur le bassin hydrogéologique. Le débit spécifique hydrogéologique moyen interannuel sur le secteur s'établirait à environ 10 l/s/km². Au droit du projet, le débit souterrain est très faible, il n'excèderait pas 3.6 m³/h.

La ressource en eau souterraine du secteur d'étude est faible.

2. Contexte environnemental et hydrogéologique

CDMCCE203823 RDMCCE02399 Carte piézométrique du 30/08/2012 (Source : CPGF-Horizon, 2012) SOGRAP / Thizy-les-Bourgs (69) Ouvrages recensés et mesure piézométrique Résultats de l'étude CPGF-Horizon, 2012 Courbes isopiézométriques en m NGF (tous les 10 mètres) Sens d'écoulement Emprise du site Plan d'eau Source Légende

Figure 14 : Carte piézométrique du 30/08/2012 (Source : CPGF-Horizon, 2012)

2.3.4 Suivi piézométrique au droit du site

Trois piézomètres de suivi ont été créés sur le site : un en amont hydraulique (« Piézo 3 »), deux en aval hydraulique (« Piézo 1 » et « Piézo 2 »). Ces ouvrages sont localisés sur la **Figure 6** et leurs caractéristiques sont résumées dans le **Tableau 12**.

Tableau 12 : Caractéristiques des piézomètres de suivi du site

Nom de l'ouvrage	Coordonnée X (L93)	Coordonnée Y (L93)	Altitude du repère (haut tubage) en m NGF	Profondeur de l'ouvrage par rapport au repère (m)	Diamètre (mm)
Piézo 1	799212.12	6549911.54	437.74	42.5	112
Piézo 2	799102.93	6550021.51	440.28	47.0	112
Piézo 3	799066.9	6549845.58	454.01	51.5	112

<u>Remarque</u> : les relevés des fonds d'ouvrages sont approximatifs du fait de la présence d'argile qui rend la mesure difficile.

Ces ouvrages font l'objet d'un suivi du niveau de nappe depuis juin 2014 (relevé du niveau de nappe deux fois par an). L'ensemble des données récoltées est reporté dans le **Tableau 13** ci-dessous (données historiques SOGRAP et mesure du 02/04/2020 lors de notre intervention sur site).

Tableau 13 : Mesures des niveaux de nappe sur le site entre 2014 et 2020

Date de la mesure	Mesure de n	iveau de napp	e (en m NGF)
Date de la mesure	Piézo 1	Piézo 2	Piézo 3
23/06/2014	409.01	417.50	425.18
18/11/2014	414.54	420.99	431.70
02/06/2015	409.10	418.97	425.77
18/11/2015	408.94	-	423.41
21/06/2016	409.52	419.11	423.70
17/11/2016	410.19	419.46	423.42
20/04/2017	409.34	419.21	426.41
03/10/2017	409.42	418.87	423.85
14/06/2018	411.69	-	428.46
08/10/2018	408.89	418.43	423.46
02/09/2019	409.05	419.07	424.41
04/12/2019	411.47	419.92	428.57
02/04/2020	409.27	419.10	426.11
Moyenne (m NGF)	410.03	419.15	425.73
Battement maximal (m)	5.65	3.49	8.29

Les mesures de nappe réalisées le 02/04/2020 sont en adéquation avec la carte piézométrique de 2012 (cf. **Figure 14**), et correspondent à une période de moyennes eaux (niveau de nappe entre 430 et 420 m NGF au droit du site).

Depuis le début du suivi du niveau, l'écoulement au droit du site suit toujours une direction nord-ouest / sudest : le niveau dans l'ouvrage « Piézo 3 » est supérieur au niveau de l'ouvrage « Piézo 2 », lui-même supérieur au niveau de l'ouvrage « Piézo 1 » (cf. **Figure 15**). Les mesures des 18/11/2014, 14/06/2018 et 04/12/2019 correspondent à des niveaux supérieurs aux moyennes eaux. La carte piézométrique du 02/04/2020 est tracée sur la **Figure 16**. Au droit du site, le gradient de la nappe est de l'ordre de 11,4 %.

Figure 15 : Evolution du niveau de nappe au droit du site entre 2014 et 2020

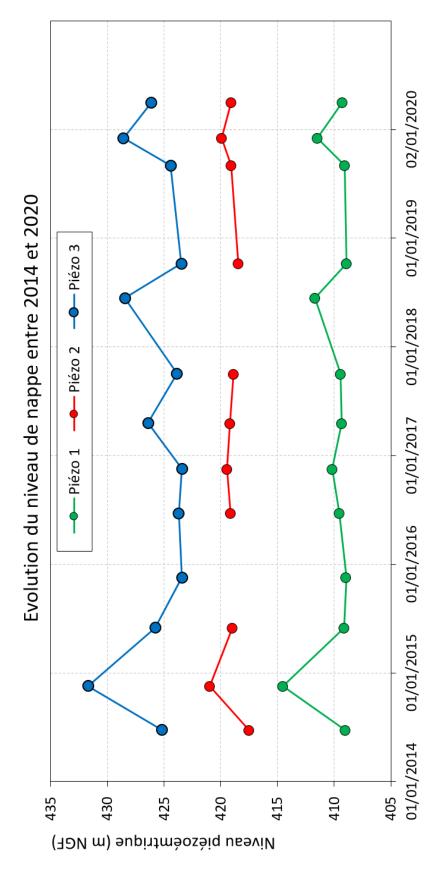
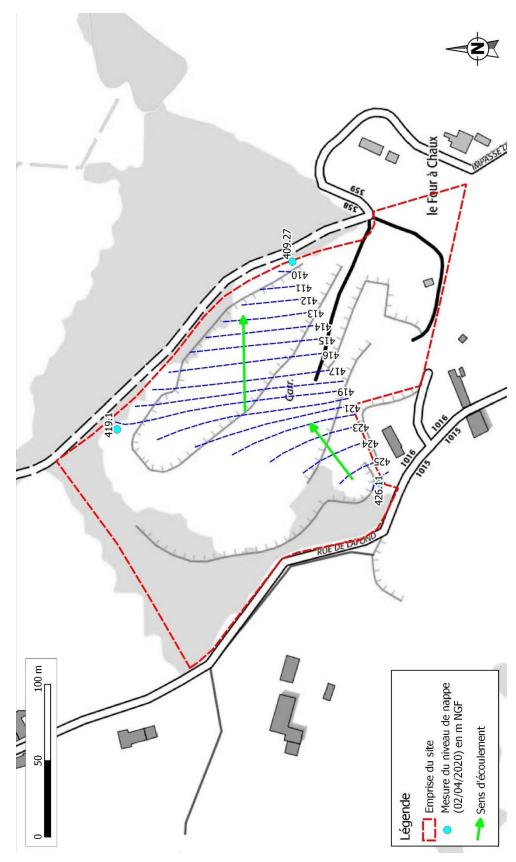
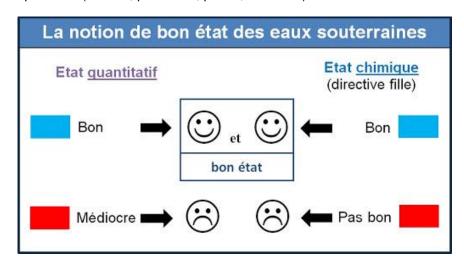



Figure 16 : Carte piézométrique du 02/04/2020 au droit du site (Source : fond de plan Géoportail)

2.3.5 Usage et cibles en aval

La commune de Thizy-les-Bourgs est alimentée en eau potable par le champ captant de Commelle-Vernay (42), dont les puits sont situés en nappe alluviale de la Loire, au sud de Roanne (Source : PLU).

Dans un rayon de 1 km autour du site, seuls des **puits particuliers** sont recensés, sachant qu'il s'agit de prélèvements faibles, inférieurs à 1 m³/j (cf. **Annexe 3**). Aucun prélèvement d'eau n'est recensé dans la BNPE (Banque Nationale des Prélèvements d'Eau) dans un rayon de 4,5 km autour du site.


Le site est situé hors de périmètres de protection et de zones d'alimentation de captages d'eau potable.

La ressource en eau du secteur (aquifère alluvial) est peu exploitée et ne constitue pas une ressource d'intérêt (absence de captage AEP).

2.3.6 Qualité des eaux souterraines

2.3.6.1 Données générales

La directive cadre sur l'eau (DCE) définit le « bon état » d'une masse d'eau souterraine lorsque l'état quantitatif et l'état chimique de celle-ci sont bons. L'état quantitatif est défini en comparant les volumes prélevés avec la capacité de renouvellement de la ressource. L'état chimique est évalué en mesurant la concentration d'un certain nombre de polluants (nitrates, pesticides, plomb, chlorures).

Le site d'étude est situé dans la masse d'eau souterraine FRGG133 (Bassin versant de la Loire – Madeleine). Il s'agit d'une masse d'eau de faible épaisseur, constituée par les arènes granitiques.

Le tableau suivant présente les objectifs de qualité et de quantité de cette masse d'eau souterraine définis par le SDAGE Loire Bretagne 2016-2021.

Tableau 14 : Objectifs du SDAGE 2016-2021 de la masse d'eau souterraine FRGG133

Code N	Nom masse	Objectifs d'état qualitatif		Objectifs d'état quantitatif		Objectif d'état global	
Code	d'eau	Objectif	Délai d'atteinte	Objectif	Délai d'atteinte	Objectif	Délai d'atteinte
FRGG133	Bassin versant de la Loire - Madeleine	Bon état	2015	Bon état	2015	Bon état	2015

2.3.6.2 Surveillance des eaux souterraines

Les trois piézomètres présents sur le site (cf. **Tableau 12** et **Figure 6**) font l'objet d'un suivi règlementaire de la qualité des eaux souterraines. Les paramètres analysés dans les ouvrages de suivi sont a minima les suivants (cf. Annexe 6 de l'AP du 16/05/2013) :

- pH,
- potentiel d'oxydoréduction,
- conductivité électrique,
- DCO.
- DBO5,
- COT,

- amiante,
- hydrocarbures totaux,
- HAP,
- PCB-PCT,
- métaux (As, Ba, Cd, Cr total, Cu, Hg, Mo, Ni, Pb, Sb, Se, Zn).

D'après l'arrêté préfectoral du 16/05/2013, la qualité des eaux souterraines doit être comparée aux normes de référence du Code de la Santé Publique vis-à-vis de l'eau brute (Annexe II de l'arrêté du 11/01/2007).

Les données de qualité acquises au cours des cinq dernières années (entre 2014 et 2019) sont reportées en **Annexe 4**. L'analyse de ces données montre que :

- l'ouvrage « Piézo 3 » (ouvrage amont) présente :
 - des valeurs de conductivité électrique comprises entre 721 et 1 039 μS/cm ;
 - des concentrations en carbone organique total (COT) comprises entre 1,5 et 8,1 mg/l;
 - pour les métaux :
 - des détections de zinc (entre 0,06 et 0,01 μg/l);
 - des détections d'arsenic (entre 0,44 et 0,67 μg/l);
 - des détections de sélénium (entre 1,02 et 8,45 μg/l);
 - pour les HAP: des détections régulières de phénanthrène, anthracène, fluoranthène et benzo(b)fluoranthène; des détections sporadiques de naphtalène, pyrène, benzo(a)anthracène, chrysène, benzo(k)fluoranthène, benzo(a)pyrène, benzo(ghi)pérylène et indéno(1.2.3-cd)pyrène.
 - pour les PCB : des détections de substances survenues uniquement en septembre 2019 ;
 - pour les autres paramètres :
 - une concentration en nitrates évoluant entre 5,3 et 23,7 mg/l entre octobre 2017 et décembre 2019 (pas de dépassement de la limite du Code de la Santé Publique pour l'eau brute) ;

On observe dès l'amont la présence de substances anthropiques (HAP, PCB) qui laissent supposer une source de pollution à l'extérieur du site.

- l'ouvrage « Piézo 1 » (ouvrage aval) présente :
 - des valeurs de conductivité électrique régulièrement supérieures à 1 100 μS/cm;
 - des concentrations en carbone organique total (COT) comprises entre 2,2 et 7,3 mg/l;
 - pour les métaux :
 - des détections de zinc(entre 0,01 et 0,04 μg/l);
 - des détections d'arsenic (entre 0,26 et 0,32 μg/l);
 - des détections de sélénium (entre 1,09 et 8,2 μg/l) ;
 - pour les HAP : des détections régulières de **phénanthrène**; des détections sporadiques de diverses autres substances lors de certaines analyses (octobre 2017 et septembre 2019) ;
 - pour les PCB : des détections de substances survenues uniquement en septembre 2019 ;
 - pour les autres paramètres :
 - une concentration en nitrates évoluant entre 1,5 et 31,7 mg/l entre octobre 2017 et septembre 2019;

- un dépassement de la référence du Code de la Santé Publique vis-à-vis de l'eau brute pour l'ammonium, survenu en juin 2018 (valeur de 25 mg/l).
- l'ouvrage « Piézo 2 » (ouvrage aval) présente :
 - des valeurs de conductivité électrique régulièrement supérieures à 1 100 μS/cm;
 - des concentrations en carbone organique total (COT) comprises entre 2,1 et 10 mg/l;
 - pour les métaux :
 - des détections de zinc (entre 0,01 et 0,06 μg/l) ;
 - des détections d'arsenic (entre 0,86 et 1,63 μg/l);
 - des détections de sélénium (entre 0,64 et 0,79 μg/l);
 - pour les HAP : des détections régulières d'acénaphtylène, fluorène, phénanthrène, anthracène, fluoranthène et pyrène ; des détections sporadiques d'autres substances (benzo(a)anthracène, chrysène, benzo(b)fluoranthène, benzo(a)pyrène et benzo(ghi)pérylène) ;
 - pour les PCB : des détections de substances survenues uniquement en septembre 2019 ;
 - pour les autres paramètres :
 - une concentration en nitrates évoluant entre 42,7 et 86,3 mg/l entre octobre 2017 et décembre 2019 (régulièrement des dépassements de la limite du Code de la Santé Publique vis-à-vis de l'eau brute);
 - une **concentration en nitrites** non négligeable (entre 0,01 et 0,14 mg/l entre octobre 2017 et décembre 2019) ;
 - des **dépassements** de la référence du Code de la Santé Publique vis-à-vis de l'eau brute pour les **sulfates** survenus en septembre et décembre 2019 (valeurs de 408 et 292 mg/l).

L'eau au droit du site présente des teneurs élevées en sulfates (dépassements de la référence du Code de la Santé Publique vis-à-vis de l'eau brute dans les trois ouvrages de suivi), des concentrations en nitrates supérieures à la limite du Code de la Santé Publique vis-à-vis de l'eau brute (pour le « Piézo 2 » situé en aval du site), des détections régulières de métaux (zinc, arsenic et sélénium) dans les trois ouvrages de suivi, et des détections régulières de HAP.

On peut souligner, que l'ouvrage amont du site présente des contaminations anthropiques (HAP, PCB). Ceci laisse supposer qu'il existe une source de pollution à l'extérieure du site.

2.3.6.3 Prélèvement d'eau

Lors de notre intervention sur site le 02/04/2020, deux prélèvements d'eau ont été effectués (un dans le piézomètre amont « Piézo 3 », et un dans un des piézomètre aval « Piézo 2 ») à l'aide d'une pompe *PP36*. Les fiches des prélèvements d'eau souterraine sont disponibles en **Annexe 5**.

Les paramètres physico-chimiques mesurés in-situ (mallette PONSEL) sont inscrits dans le **Tableau 15**. Il est à noter la valeur de conductivité électrique assez élevée dans l'ouvrage « Piézo 2 » situé à l'aval du site (valeur supérieure à 1 100 µS/cm).

Tableau 15: Mesures physico-chimiques in-situ (le 02/04/2020)

Paramètre mesuré	Piézo 2 Valeur obtenue et unité	Piézo 3 Valeur obtenue et unité		
Température	12,95 °C	13,78 °C		
Conductivité électrique	1 138 μS/cm	722,6 μS/cm		
pH	6,87	7,00		
Oxygène dissous	0,2 mg/L	3,9 mg/L		
Potentiel Redox	457 mV	433 mV		
Remarques diverses	Aucune odeur ou couleur particulière. Quelques fines en début de pompage puis eau limpide			

Après stockage en glacière, les échantillons ont été analysés par le laboratoire AGROLAB. L'ensemble des résultats des analyses est reporté dans le **Tableau 16**, et le bulletin d'analyse est reporté en **Annexe 6**.

D'après les résultats, la concentration en Carbone Organique Total est inférieure à la limite du Code de la Santé Publique vis-à-vis des eaux brutes (< 10 mg/L).

Par ailleurs, la concentration en Sulfates, dans l'ouvrage « Piézo 2 » (situé à l'aval), est supérieure à la limite du Code de la Santé Publique concernant les eaux brutes (> 250 mg/L).

En outre, nous pouvons souligner : l'absence de détection d'hydrocarbures, de HAP, de BTEX et de PCB ; la détection de Baryum et de Zinc ; une concentration en nitrates de 5,9 (« Piézo 3 ») et 17 (« Piézo 2 ») mg/L.

Tableau 16 : Résultats des analyses réalisées sur les eaux souterraines au droit du site (prélèvement du 02/04/2020)

			Prélèvemen	nt du 02/04/20
		Référence eau brute Annexe 2 arrêté du 11/01/07	Piézo 3	Piézo 2
Métaux et métalloïdes				
Antimoine (Sb)	μg/L	-	<10	<10
Arsenic (As)	μg/L	100	<10	<10
Baryum (Ba)	μg/L	-	42	76
Cadmium (Cd)	μg/L	5	<0.2	<0.2
Chrome (Cr)	μg/L	50	<4	<4
Cuivre (Cu)	μg/L	-	<4	<4
Mercure (Hg)	μg/L	1	<0.1	<0.1
Molybdène (Mo)	μg/L	-	<10	<10
Nickel (Ni)	μg/L	-	<10	<10
Plomb (Pb)	μg/L	50	<10	<10
Sélénium (Se)	μg/L	10	<15	<15
Zinc (Zn)	μg/L	5000	<4	6.2
Hydrocarbures volatils C5-C10				
Fraction C5-C6	μg/L	-	<10	<10
Fraction C6-C8	μg/L	-	<10	<10
Fraction C8-C10	μg/L	-	<10	<10
Somme des hydrocarbures C6-C10 (1)	μg/L	1000	<10	<10
Indice hydrocarbure C10-C40 - méthode ISO				
Fraction C10-C12	μg/L	-	<10	<10
Fraction C12-C16	μg/L	-	<10	12
Fraction C16-C20	μg/L	-	<5.0	<5.0
Fraction C20-C24	μg/L	-	<5.0	<5.0
Fraction C24-C28	μg/L	-	<5.0	<5.0
Fraction C28-C32	μg/L	-	<5.0	<5.0
Fraction C32-C36	μg/L	-	<5.0	<5.0
Fraction C36-C40	μg/L	-	<5.0	<5.0
Somme des hydrocarbures C10-C40 (1)	μg/L	1000	<50	<50
HAP - méthode ISO				
Naphtalène	μg/L	-	<0.010	< 0.010
Acénaphtylène	μg/L	-	< 0.050	< 0.050
Acénaphtène	μg/L	-	< 0.0050	<0.0050
Fluorène	μg/L	-	< 0.0050	<0.0050
Phénanthrène	μg/L	-	< 0.0050	<0.0050
Anthracène	μg/L	-	<0.0050	<0.0050
Fluoranthène (3)	μg/L	-	<0.0050	<0.0050
Pyrène	μg/L	-	<0.0050	<0.0050
Benzo(a)anthracène	μg/L	-	<0.0050	<0.0050
Chrysène	μg/L	-	<0.0050	<0.0050
Benzo(b)fluoranthène (2) (3)	μg/L	-	<0.0050	<0.0050
Benzo(k)fluoranthène (2) (3)	μg/L	-	<0.0050	<0.0050
Benzo(a)pyrène (3)	μg/L	-	< 0.0050	<0.0050
Dibenzo(a,h)anthracène	μg/L	-	<0.0050	<0.0050
Benzo(g,h,i)pérylène (2) (3)	μg/L	-	<0.0050	<0.0050
Indéno(1,2,3-cd)pyrène (2) (3)	μg/L	-	<0.0050	<0.0050
BTEX				
Benzène	μg/L	-	<0.2	<0.2
Toluène	μg/L	-	<0.5	<0.5
Ethylbenzène	μg/L	-	<0.5	<0.5
m,p-Xylène	μg/L	-	<0.2	<0.2
o-Xylène	μg/L	-	<0.50	<0.50
РСВ				
PCB (28)	μg/L	-	<0.010	<0.010
PCB (52)	μg/L	-	<0.010	<0.010
PCB (101)	μg/L	-	<0.010	<0.010
PCB (118)	μg/L	-	<0.010	<0.010
PCB (138)	μg/L	-	<0.010	<0.010
PCB (153)	μg/L	-	<0.010	<0.010
PCB (180)	μg/L	-	<0.010	<0.010
Composés phénoliques	F-31 -			
indice phénol	μg/L	100	<10	<10
Cations et anions	μ9/ L	100	110	\10
	ug/!	4000	20	<20
Ammonium Fluor et fluorures	μg/L	4000	190	<20 170
Nitrites	μg/L	-		20
Nitrates	μg/L		<10 5900	17000
Sulfates	μg/L	100000 250000	74000	45000
Chlorures	μg/L	200000	41000	27000 27000
COT	μg/L mg/l	10	2.7	8
CO1	mg/L	10	۷./	0

- (1) Annexe 2 arrêté du 11/01/07 : valeur limite pour l'ensemble des hydrocarbures
- (2) Annexe 1 arrêté du 11/01/07 : ∑ des benzo(b) fluoranthène, benzo(k) fluoranthène, benzo(g,h,i)pérylène, indeno(1,2,3,c-d)pyrène
- (3) Annexe 2 arrêté du 11/01/07 : ∑ des benzo(b) fluoranthène, benzo(k) fluoranthène, benzo(g,h,i)pérylène, indeno(1,2,3,c-d)pyrène, fluoranthène, benzo(a)pyrène
- (4) Les valeurs de bruit de fond OQAI concernent respectivement le n-décane et n-undécane
- (5) Annexe 1 arrêté du 11/01/07: 25 μ g/L jusque 12/2013, 10 μ g/L à partir de 2014
- (6) Annexe 1 et 2 arrêté du 11/01/07 : Valeur définie pour la somme des pesticides
- (7) Annexe 1 et 2 arrêté du 11/01/07 : Valeur définie pour chaque pesticide individuellement

concentration supérieure au seuil eaux brutes

2.3.6.4 Estimation du fond hydrochimique de l'eau souterraine

Le **Tableau 17** présente le fond hydrochimique qui correspond aux concentrations retenues pour les calculs d'incidences qualitatives du projet. Ce fond hydrochimique tient compte de l'ensemble des données de qualité récoltées entre 2014 et 2020 sur les trois piézomètres du site. Selon les recommandations du guide du BRGM [Guide d'évaluation de la qualité des eaux souterraines, juillet 2019], le calcul du fond hydrochimique peut être considéré :

- égal à la moyenne des concentrations mesurées sur tous les ouvrages (si aucune valeur n'est inférieure à la limite de quantification) : cas de l'Arsenic, du Sélénium, du Zinc, des Fluorures, des Chlorures, des Sulfates, de la Fraction soluble et du COT;
- égal à la moyenne des concentrations mesurées sur tous les ouvrages, en considérant les valeurs inférieures à la limite de quantification égales à la moitié de cette valeur : cas du Baryum ;
- équivalent à la moitié du seuil de quantification du laboratoire le plus bas (dans le cas où aucune détection n'est apparue sur l'ensemble des ouvrages de suivi) : cas du Cadmium, du Chrome, du Cuivre, du Mercure, du Molybdène, du Nickel, du Plomb, de l'Antimoine et des Phénols.

Tableau 17 : Calcul du fond hydrochimique de l'eau souterraine au droit du site

Paramètre	Unité	Piézo 1	Piézo 2	Piézo 3	Fond hydrochimique retenu
As	μg.L ⁻¹	0.29	1.15	0.61	0.68
Ва	μg.L ⁻¹	< 0.1	76	42	39.35
Cd	μg.L ⁻¹	< 2	< 0.2	< 0.2	< 0.1
Cr	μg.L ⁻¹	< 5	< 4	< 4	< 2
Cu	μg.L ⁻¹	< 0.01	< 0.01	< 0.01	< 0.005
Hg	μg.L ⁻¹	< 0.05	< 0.05	< 0.05	< 0.025
Мо	μg.L ⁻¹	< 50	< 10	< 10	< 5
Ni	μg.L ⁻¹	< 5	< 5	< 5	< 2.5
Pb	μg.L ⁻¹	< 5	< 5	< 5	< 2.5
Sb	μg.L ⁻¹	< 50	< 10	< 10	< 5
Se	μg.L ⁻¹	4.20	0.70	3.48	2.80
Zn	μg.L ⁻¹	0.03	0.03	0.04	0.03
F	mg.L ⁻¹	-	0,17	0,19	0.18
CI	mg.L ⁻¹	9.0	24.3	39.7	24.3
SO ₄	mg.L ⁻¹	124.0	313.2	70	169.1
Fraction soluble	mg.L ⁻¹	632.8	702.1	515.5	616.8
сот	mg.L ⁻¹	3.1	6.2	3.0	4.1
Phénols	μg.L ⁻¹	-	< 10	< 10	< 5

Les valeurs du fond hydrochimique retenu seront utilisées comme hypothèse de concentration initiale présente sur le site dans le modèle Hydrotex (cf. § 3).

2.4 Contexte hydrologique

2.4.1 Contexte local

Dans la région, le cours d'eau le plus important est le ruisseau de la Trambouze, qui traverse le village de Bourg-de-Thizy à environ 1,2 km au sud-est du site (n°FRGR0181 : la Trambouze et ses affluents, depuis la source jusqu'à sa confluence avec le Rhins). Ce ruisseau s'écoule du nord-est vers le sud-ouest, et se jette dans le Rhins (n°FRGR0178a) entre les communes de Saint-Victor-Sur-Rhins et Regny.

Quelques mares sont présentes autour du site. Ces points d'eau, de faibles volumes, **n'ont pas d'utilisation connue**, et rejoignent la Trambouze, pour la plupart, à hauteur de Bourg-de-Thizy. L'eau des étangs peut cependant être utilisée pour l'irrigation des terres alentours.

Il n'existe aucun cours d'eau particulier sur le site.

En s'éloignant du site, nous retrouvons : le Mardoret, qui est un affluent de la Trambouze (confluence des deux cours d'eau en amont de Thizy-les-Bourgs) ; le Marnanton, qui se jette dans le Rhins à hauteur de Saint-Victor-Sur-Rhins ; le Trambouzan, qui est situé au nord du site et qui s'écoule de l'est à l'ouest ; et le Rhins, le Rhodon et le Trambouzan rejoignent la Loire à hauteur de Roanne.

Le contexte hydrologique du site est présenté sur la Figure 17.

2.4.2 Qualité des eaux superficielles

2.4.2.1 Données générales

D'après le classement de 2016 du SDAGE, la Trambouze présente une eau de qualité médiocre alors que le Rhins présente une eau de bonne qualité.

Les objectifs écologiques et chimiques pour les cours d'eau à proximité du site sont les suivants (Source : SDAGE 2016-2021) :

Code de la	Name de la massa disso.	Objectif éco	logique	Objectif chimique	
masse d'eau	Nom de la masse d'eau	Objectif	Délai	Objectif	Délai
FRGR0181	La Trambouze et ses affluents depuis la source jusqu'à sa confluence avec la Loire	Bon état	2021	Bon état	Non défini
FRGR0178a	Le Rhins et ses affluents depuis la source jusqu'à la confluence avec la Trambouze	Bon état	2021	Bon état	Non défini

Tableau 18 : Masses d'eau et objectifs écologiques et chimiques

La qualité de l'eau des cours d'eau est également accessible sur le site NAIADES (<u>www.naiades.eaufrance.fr</u>). D'après ces données, l'eau de la Trambouze à Bourg-de-Thizy a été analysée en septembre 2011 et en septembre 2016.

Les résultats montrent des détections de différents paramètres de l'arrêté du 12/12/2014, comme indiqué dans le **Tableau 19** ci-dessous.

Tableau 19 : Qualité de l'eau de la Trambouze à Bourg-de-Thizy, pour les paramètres de l'arrêté du 12/12/2014 (source : site NAIADES)

Paramètre	Période d'analyses	Nombre d'analyses	Valeur moyenne	Valeur minimale	Valeur maximale
Arsenic	2011 et 2016	2	30,6 mg/kg MS	20,7 mg/kg MS	40,6 mg/kg MS
Cadmium	2011 et 2016	2	1,3 mg/kg MS	0,5 mg/kg MS	2,04 mg/kg MS
Chrome	2011 et 2016	2	13,4 mg/kg MS	11,8 mg/kg MS	15,1 mg/kg MS
Cuivre	2011 et 2016	2	34,04 mg/kg MS	12,0 mg/kg MS	56,08 mg/kg MS
Mercure	2011 et 2016	2	0,083 mg/kg MS	0,026 mg/kg MS	0,139 mg/kg MS
Nickel	2011 et 2016	2	15,96 mg/kg MS	9,4 mg/kg MS	22,52 mg/kg MS
Plomb	2011 et 2016	2	34,78 mg/kg MS	33,05 mg/kg MS	36,5 mg/kg MS
Zinc	2011 et 2016	2	367,05 mg/kg MS	111,5 mg/kg MS	622,6 mg/kg MS

2.4.2.2 Surveillance des eaux superficielles

Aucune surveillance spécifique régulière des eaux superficielles n'est actuellement réalisée à proximité immédiate du site.

2.4.3 Evolution des débits dans la Trambouze

D'après une précédente étude de BURGEAP (RLy1498-03, 2005), la Trambouze présente des débits assez faibles (QMNA5 de 99 l/s à Combres, soit à environ 3 km en aval de Bourg-de-Thizy).

Le débit spécifique hydrologique d'étiage de la Trambouze est de 3,5 l/s/km² (CPGF-Horizon, 2012).

Aucun cours d'eau avec un usage AEP n'est présent dans le secteur d'étude.

CDMCCE203823 RDMCCE02399 Le Marnanton Hydrologie du secteur (Source : fond de plan Géoportail) La Trambouze SOGRAP / Thizy-les-Bourgs (69) Le Trambouzan Le Rhodon 1000 m Emprise du site Cours d'eau Plan d'eau 500 100 Hydrologie égende. 20

Figure 17 : Contexte hydrologique du site (Source : fond de plan Géoportail)

BURGEAP • Etude de faisabilité pour l'adaptation des seuils chimiques de la mise en dépôt des déchets inertes (inertes +)
3. Calcul des incidences sur les eaux souterraines et superficielles

3. Calcul des incidences sur les eaux souterraines et superficielles

3.1 Méthode de calcul

Un modèle hydrogéologique 1D a été construit afin d'évaluer l'incidence des remblais à augmentation de seuils « Inertes + » sur la qualité de la nappe.

Hydrotex est un outil analytique 1D fonctionnant sur le logiciel Microsoft Excel©, conçu par le BRGM (Bureau de Recherches Géologiques et Minières) et l'INERIS (Institut National de l'Environnement industriel et des RISques) pour le compte du MEDD (Ministère de l'Environnement et du Développement Durable).

Il permet de calculer les incidences sur la qualité de la nappe d'un projet de stockage ou remblaiement de matériaux présentant des concentrations plus importantes que les concentrations du sol qui les accueille, comme illustré sur la **Figure 18** ci-dessous.

Le rapport RP-620227-FR disponible sur le site internet du BRGM présente en détail Hydrotex.

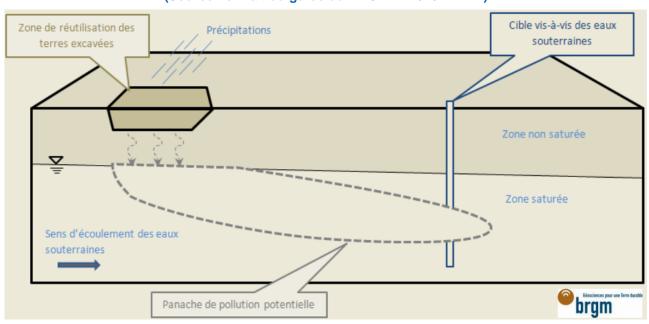


Figure 18 : Coupe schématique d'un calcul d'incidence suivant la méthode Hydrotex (Source : extrait du guide du BRGM RP-620227-RP)

3.2 Hypothèses de calcul

Les principales hypothèses de calcul sont les suivantes :

- pour les besoins du calcul, les remblais sont répartis sur l'ensemble du site. Le premier scénario est de considérer un remblaiement avec 100 % de matériaux « inertes + ». L'approche retenue pour le calcul est donc très sécuritaire dans la mesure où elle maximise les flux de concentrations qui sont linéairement dépendant de la surface remblayée; un deuxième scénario a été réalisé, en considérant un remblaiement avec 50 % de matériaux « inertes + » et 50 % de matériaux inertes;
- le gradient d'écoulement de 11,4 % est le gradient moyen des valeurs mesurées au droit du site;
- les dimensions du site complet sont de 170 * 330 m (dimensions prises en compte pour le calcul d'incidence sur la cible « eaux superficielles »). Pour la cible « Puits domestique », les dimensions prises en compte sont les suivantes : 100 * 140 m (il s'agit de la seule zone potentiellement

GEAP Detude de faisabilité pour l'adaptation des seuils chimiques de la mise en dépôt des déchets inertes (inertes +)
3. Calcul des incidences sur les eaux souterraines et superficielles

contributive à l'écoulement en direction du puits domestique d'après la piézométrie illustrée sur la Figure 16) ;

- la pluie efficace au droit du site est considérée égale à 75 mm/an (d'après les données des années 2015-2019 au niveau de la station de mesure de Thizy-les-Bourgs n°69158001 et des recherches bibliographiques complémentaires) ;
- la conductivité hydraulique des terrains au droit du site est comprise entre 1,3.10-6 (d'après la loi de Darcy) et 3,2.10-6 m/s (d'après les fiches de prélèvement dans les ouvrages).

D'après la loi de Darcy :

$$K = \frac{Q}{A} \frac{\Delta H}{L}$$

Avec Q le débit entrant (en m³/s), K la conductivité hydraulique (en m/s), A la surface de la section étudiée (en m²) et $\frac{\Delta H}{r}$ le gradient hydraulique.

Le débit entrant Q est égal à :

 $Q = Pluie\ efficace * impluvium = 75\ mm/an * 600\ 000\ m^2 = 1,43.\ 10^{-3}\ m^3/s$

La surface de la section étudiée A est égale à :

 $A = \text{\'e}paisseur\ de\ la\ nappe * section\ de\ l'impluvium = 13,7\ m * 700\ m = 9590\ m^2$

La conductivité hydraulique au droit du site est donc approximativement de :

$$K = \frac{1.9 \cdot 10^{-3}}{9.590 \times 11.4\%} = 1.3 \cdot 10^{-6} \, m/s$$

D'après les pompages dans les piézomètres lors des prélèvements d'eau, la conductivité hydraulique moyenne est de 3,2.10-6 m/s (calcul réalisé à partir des données de 21 prélèvements dans les ouvrages au droit du site).

Pour être sécuritaire dans le calcul des incidences du projet, nous retenons une conductivité hydraulique de 1,3.10⁻⁶ m/s dans le modèle.

Le **Tableau 20** présente le paramétrage du modèle Hydrotex (exemple de l'arsenic) pour les deux scénarios testés (scénario 1 : 100% de remblais « inertes + » ; scénario 2 : 50 % de remblais « inertes + »).

3.2.1 Cibles retenues

Aucun forage utilisé pour l'alimentation publique en eau potable ne se trouve en aval du site.

Cependant, lors de l'étude de CPGF-Horizon en 2012, un puits domestique a été recensé au sud du site (à 200 m) (cf. **Figure 14** et **Figure 19**). Cet ouvrage est utilisé pour l'arrosage du jardin.

Par conséquent, les cibles considérées sont :

- le puits domestique situé à 200 m au sud du site (usage d'irrigation) ;
- les eaux superficielles présentes à l'est du site (à environ 200 m) qui ne présentent aucune usage connu, et qui rejoignent la Trambouze au niveau de Bourg-de-Thizy.

Figure 19 : Photographie du puits domestique constituant la première cible potentielle du projet

BURGEAP • Etude de faisabilité pour l'adaptation des seuils chimiques de la mise en dépôt des déchets inertes (inertes +)
3. Calcul des incidences sur les eaux souterraines et superficielles

Tableau 20 : Paramétrage du modèle Hydrotex pour les deux cibles et pour les scénarios étudiés (exemple pour l'arsenic)

		Cible : puits	domestique	Cible : eaux superficielles		
Etape du calcul Hydrotex	Paramètre du modèle Hydrotex	Scénario 1 100 % de remblais « inertes + »	Scénario 2 50 % de remblais « inertes + »	Scénario 1 100 % de remblais « inertes + »	Scénario 2 50 % de remblais « inertes + »	
Etape 1	Concentration cible envisagée pour la substance étudiée C_{cible}	0,01 mg/l	0,01 mg/l	0,01 mg/l	0,01 mg/l	
	Concentration mesurée dans l'éluat C _{éluat}	0,15 mg/l	0,1 mg/l	0,15 mg/l	0,1 mg/l	
	Dimension de la zone de réutilisation dans le sens d'écoulement de la nappe <i>L</i>	140 m	140 m	330 m	330 m	
	Pluviométrie efficace P _e	75 mm/an	75 mm/an	75 mm/an	75 mm/an	
	Epaisseur de la nappe e	13,7 m	13,7 m	13,7 m	13,7 m	
	Conductivité hydraulique K	1,3.10 ⁻⁶ m/s	1,3.10 ⁻⁶ m/s	1,3.10 ⁻⁶ m/s	1,3.10 ⁻⁶ m/s	
Etape 2	Gradient hydraulique i	114 ‰	114 ‰	114 ‰	114 ‰	
	Epaisseur de la zone de mélange Z_m	13,7 m	13,7 m	13,7 m	13,7 m	
	Facteur de dilution FD	7,1	7,1	3,6	3,6	
	Concentration calculée dans les eaux souterraines au droit de la zone de réutilisation $C_{c,2}$	2,11.10 ⁻² mg/l	1,41.10 ⁻² mg/l	4,18.10 ⁻² mg/l	2,79.10 ⁻² mg/l	
	Dimension de la zone de réutilisation perpendiculaire au sens d'écoulement de la nappe S_{γ}	100 m	100 m	170 m	170 m	
	Masse volumique apparente sèche $r_{a,n}$	2,0 kg/l	2,0 kg/l	2,0 kg/l	2,0 kg/l	
	Porosité efficace n _e	10 %	10 %	10 %	10 %	
	Epaisseur du panache de pollution dans la nappe, sous la zone de réutilisation S_z	13,7 m	13,7 m	13,7 m	13,7 m	
Etape 3	Distance entre la cible et la zone de réutilisation, parallèlement au sens d'écoulement de la nappe x	200 m	200 m	200 m	200 m	
	Dispersivité longitudinale a _x	20 m	20 m	20 m	20 m	
	Dispersivité transversale ay	2,0 m	2,0 m	2,0 m	2,0 m	
	Dispersivité verticale az	0,2 m	0,2 m	0,2 m	0,2 m	
	Vitesse de transport du polluant u	1,28.10 ⁻¹ m/j	1,28.10 ⁻¹ m/j	1,28.10 ⁻¹ m/j	1,28.10 ⁻¹ m/j	
	Facteur d'atténuation <i>FA</i>	1,2392	1,2392	1,1467	1,1467	
	Incidence calculée	1,71.10 ⁻² mg/l	1,14.10 ⁻² mg/l	3,65.10 ⁻² mg/l	2,43.10 ⁻² mg/l	

▶ Etude de faisabilité pour l'adaptation des seuils chimiques de la mise en dépôt des déchets inertes (inertes +)

3. Calcul des incidences sur les eaux souterraines et superficielles

3.2.2 Simulations et résultats

Nous avons simulé un scénario où le site est totalement remblayé, uniquement avec des remblais de type « inertes + ». En cas de mélange remblais inertes / remblais « inertes + » (50 % de chaque), l'incidence du remblaiement sur la qualité des eaux souterraines n'est que très peu diminuée.

Le **Tableau 21** présente les incidences sur la concentration des cibles retenues. Il s'agit des résultats des simulations Hydrotex avec une concentration cible nulle (calcul d'incidence), pour chaque substance.

Tableau 21 : Incidences calculées sur les concentrations du fond hydrochimique retenu

		Incidence sur la cible puits domestique		Incidence sur la cible eaux superficielles		
Paramètre	Unité	100 % matériaux « inertes + »	50 % matériaux « inertes + »	100 % matériaux « inertes + »	50 % matériaux « inertes + »	
Antimoine (Sb)	mg/L	0,002	0,001	0,004	0,003	
Arsenic (As)	mg/L	0,017	0,011	0,037	0,024	
Baryum (Ba)	mg/L	0,684	0,456	1,460	0,972	
Cadmium (Cd)	mg/L	0,001	0,0009	0,003	0,002	
Chrome (Cr) total	mg/L	0,017	0,011	0,037	0,024	
Cuivre (Cu)	mg/L	0,068	0,046	0,146	0,097	
Mercure (Hg)	mg/L	0,0003	0,0002	0,001	0,0005	
Molybdène (Mo)	mg/L	0,017	0,011	0,037	0,024	
Nickel (Ni)	mg/L	0,014	0,009	0,029	0,019	
Plomb (Pb)	mg/L	0,017	0,011	0,037	0,024	
Sélénium (Se)	mg/L	0,003	0,001	0,007	0,0049	
Zinc (Zn)	mg/L	0,137	0,091	0,292	0,194	
Chlorures (CI)	mg/L	27,4	18,2	58,4	38,9	
Fluorures (F) / Fluor (*)	mg/L	0,30	0,20	0,73	0,486	
Sulfate (S)	mg/L	34,2	22,8	73,0	48,60	
Indice phénols	mg/L	0,034	0,023	0,073	0,047	
COT	mg/L	5,70	5,70	12,17	12,17	
Fraction soluble	mg/L	136,8	91,2	291,96	194,4	

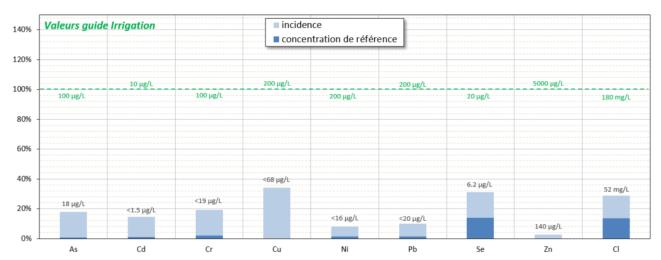
Le Tableau 22 présente les incidences ajoutées au fond hydrochimique.

En l'absence de toute donnée de qualité des eaux <u>pour les eaux superficielles à l'est du site</u>, la valeur retenue correspond à 50 % de la valeur cible envisagée pour la substance conformément au guide Hydrotex. Cette considération constitue une approche <u>majorante</u>.

▶ Etude de faisabilité pour l'adaptation des seuils chimiques de la mise en dépôt des déchets inertes (inertes +)

3. Calcul des incidences sur les eaux souterraines et superficielles

Tableau 22 : Concentrations simulées cumulées au fond hydrochimique pour la cible « puits domestique »


		PUITS DOMESTIQ	Critère eau irrigation		
Paramètre	Unité	100 % matériaux « inertes + »	50 % matériaux « inertes + »	(Référence SEQ-Eau)	
Antimoine (Sb)	mg/L	0,007	0,006	-	
Arsenic (As)	mg/L	0,018	0,012	0,1	
Baryum (Ba)	mg/L	0,723	0,495	-	
Cadmium (Cd)	mg/L	0,0015	0,001	0,01	
Chrome (Cr) total	mg/L	0,019	0,013	0,1	
Cuivre (Cu)	mg/L	0,068	0,046	0,2	
Mercure (Hg)	mg/L	0,0004	0,0003	-	
Molybdène (Mo)	mg/L	0,022	0,016	-	
Nickel (Ni)	mg/L	0,016	0,012	0,2	
Plomb (Pb)	mg/L	0,020	0,014	0,2	
Sélénium (Se)	mg/L	0,006	0,005	0,02	
Zinc (Zn)	mg/L	0,137	0,091	5	
Chlorures (CI)	mg/L	51,69	42,57	180	
Fluorures (F) / Fluor (*)	mg/L	0,52	0,408	-	
Sulfate (S)	mg/L	203,27	191,87	-	
Indice phénols	mg/L	0,039	0,028	-	
COT	mg/L	9,77	9,77	-	
Fraction soluble mg/L 753,60 708,0 -					
	Concen	tration respectant le seuil eau irrigati	ion pour le puits domestique		

Les résultats de la modélisation 1D au niveau du puits domestique ne montre aucun dépassement des seuils pour l'eau d'irrigation (SEQ-Eau). Si le remblai est effectué avec seulement 50 % de matériaux « inertes + », alors l'impact sur la qualité de l'eau souterraine est amoindri.

Pour se rendre compte de l'incidence du projet sur la qualité des eaux, les résultats sont présentés sous forme graphiques (cf. **Figure 20**).

Pour rappel, le site d'étude n'est pas concerné par un périmètre de protection de captage AEP.

Figure 20 : Incidences sur les eaux souterraines avec les valeurs guides de l'eau d'irrigation dans le cas où 100 % des remblais sont de type « inertes + »

Bgp200/12

▶ Etude de faisabilité pour l'adaptation des seuils chimiques de la mise en dépôt des déchets inertes (inertes +)

3. Calcul des incidences sur les eaux souterraines et superficielles

Tableau 23 : Concentrations simulées cumulées au fond hydrochimique pour la cible « eaux superficielles »

		EAUX SUPERFICI	ELLES à l'est du site	Référentiels de qualité pour les eaux			
Paramètre	Unité	100 % matériaux « inertes + »	50 % matériaux « inertes + »	superficielles (NQE-CMA)			
Cadmium (Cd)	mg/L	0,0030	0,002	4,5.10 ⁻⁵			
Mercure (Hg)	mg/L	0,0010	0,00053	7.10 ⁻⁵			
Nickel (Ni)	mg/L	0,046	0,036	0,034			
Plomb (Pb)	mg/L	0,044	0,031	0,014			
	Concentration respectant le seuil NQE-CMA						
Concentration supérieure au seuil NQE-CMA							

Concernant les **eaux superficielles** situées à l'est du site, la modélisation montre des dépassements de presque tous les paramètres vis-à-vis des seuils NQE-CMA ⁷(cf. tableau ci-dessus).

Cette ressource superficielle n'a cependant aucune utilisation connue.

Les résultats indiquent que le remblaiement à 100 % par des matériaux inertes de type ISDI+ n'induira aucun dépassement des valeurs de référence pour les eaux d'irrigation au niveau du puits domestique. Concernant les eaux superficielles situées à l'est du site (aucun usage de ces eaux n'est recensé), des dépassements de tous les paramètres sont notables vis-à-vis des références NQE-CMA. Ces résultats sont obtenus en faisant l'hypothèse que la totalité du site est remblayée avec des remblais « inertes+ ». L'impact est amoindri si la proportion des remblais « inertes+ » est de l'ordre de 50 % des remblais totaux.

L'incidence du projet sur les eaux superficielles doit également être quantifiée sur le cours d'eau de la Trambouze, situé en aval hydraulique du site (cf. § 0).

Réf : CDMCCE203823 / RDMCCE02488-02 AURE / DVB-ATR / JMB 04/09/2020 Page 57/59

⁷ L'arrêté du 27 juillet 2018 modifiant l'arrêté du 25 janvier 2010 relatif aux méthodes et critères d'évaluation de l'état écologique, de l'état chimique et du potentiel écologique des eaux de surface, définit le système d'évaluation de l'état des eaux (SEEE), sur la base des normes de qualité environnementales en concentration maximale admissible (NQE-CMA) et en moyenne annuelle (NQE-MA) définies dans le contexte réglementaire de la DCE.

▶ Etude de faisabilité pour l'adaptation des seuils chimiques de la mise en dépôt des déchets inertes (inertes +)

3. Calcul des incidences sur les eaux souterraines et superficielles

3.2.3 Incidence sur la Trambouze

Les eaux superficielles à l'est du site se jettent dans la Trambouze à hauteur de Thizy-les-Bourgs. Le débit d'étiage de la Trambouze est d'environ 99 l/s. La Trambouze n'a aucune relation directe avec les aquifères situés au droit du projet, toutefois elle constitue l'exutoire final des eaux de nappe du secteur via les cours de versant non pérennes, les lignes de sources, etc.... Le débit spécifique hydrogéologique moyen interannuel sur le secteur s'établit à environ 10 l/s/km², soit environ 1 l/s au droit du site.

Le **Tableau 24** présente la concentration de chaque paramètre dans la Trambouze après dilution dans le cours d'eau. Ces estimations sont très sécuritaires puisque le calcul des concentrations dans les eaux superficielles à l'est du site tient déjà compte de critères majorants (cf. § 3.2).

Tableau 24 : Concentration de chaque paramètre dans la Trambouze après dilution

Paramètre	Unité	Concentration dans les eaux superficielles à l'est du site (pour 100 % de matériaux « inertes + »		Référentiels de qualité pour les eaux superficielles (NQE-CMA)			
Cadmium (Cd)	mg/L	0,003	0,00003	4,5.10 ⁻⁵			
Mercure (Hg)	mg/L	0,001	0,00001	7.10 ⁻⁵			
Nickel (Ni)	mg/L	0,046	0,00046	0,034			
Plomb (Pb)	Plomb (Pb) mg/L		0,00044	0,014			
	Concentration respectant le seuil NQE-CMA						
Concentration supérieure au seuil NQE-CMA							

A l'issue des calculs que nous avons réalisés, il apparaît que toutes les concentrations restent inférieures aux valeurs de référence vis-à-vis des seuils NQE-CMA dans la rivière de la Trambouze. L'incidence du projet sur la Trambouze n'est pas significative, compte tenu de la dilution réalisée dans le cours d'eau.

A noter que ces calculs correspondent à une situation d'étiage uniquement, ce qui est sécuritaire (en cas de débit plus important dans le cours d'eau, la dilution sera d'autant plus importante).

 Etude de faisabilité pour l'adaptation des seuils chimiques de la mise en dépôt des déchets inertes (inertes +)
 4. Synthèse et conclusion

4. Synthèse et conclusion

Un modèle hydrogéologique 1D Hydrotex a été réalisé dans le but d'évaluer la faisabilité de valorisation de remblais constitués de matériaux inertes à dérogation de seuil (ISDI+) sur le site de Thizy-les-Bourgs (69).

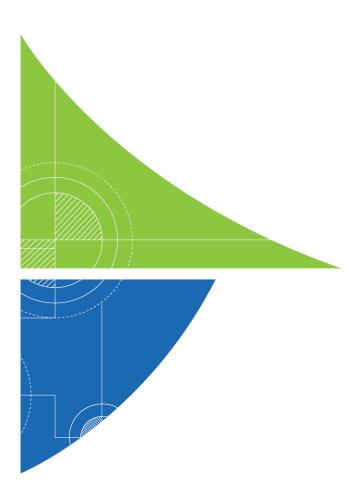
Ce modèle a permis d'apprécier l'étendue du panache des différents paramètres concernés par l'arrêté du 12/12/2014 qui définit les concentrations acceptables des matériaux inertes. Cet arrêté précise notamment que les incidences sur la qualité de la nappe doivent être vérifiées.

Le secteur d'étude n'est concerné par **aucun captage AEP**, et **aucun autre prélèvement** n'est recensé dans la BNPE. Cependant deux cibles potentielles ont été identifiées : un puits domestique situé à 200 m au sud du site (qui permet l'arrosage des espaces verts), et des eaux superficielles s'écoulant à 200 m à l'est du site (aucune utilisation connue).

Les résultats de la modélisation ne montrent aucun dépassement des valeurs de référence des eaux d'irrigation au niveau du puits domestique. Concernant les eaux superficielles, des dépassements des valeurs de référence des NQE-CMA sont constatés. Cependant, aucun usage n'est recensé dans ce cours d'eau. L'incidence du projet sur la Trambouze ne semble pas être significative, compte tenu de la dilution réalisée dans ce cours d'eau même en période d'étiage.

Dans les calculs, l'hypothèse est faite que seuls des remblais « inertes + » sont utilisés pour remblayer le site, ce qui constitue une hypothèse majorante.

Suite à ces calculs d'incidence, nous recommandons de maintenir le suivi bi-annuel de la qualité des eaux souterraines dans les trois piézomètres présents au droit du site, et de mettre en place un suivi de la qualité dans les eaux superficielles situées à l'Est du site.


Il ressort de cette étude que l'augmentation des seuils de concentration mentionnée dans l'article 6 de l'AM du 12/12/2014 peut être envisagée pour les futurs matériaux de remblais utilisés. Les résultats de la modélisation « inertes + » ne montrent aucun dépassement des valeurs de référence des eaux d'irrigation dans la cible la plus proche (puits domestique situé à 200 m du site). Aucune utilisation des eaux superficielles n'est recensée, et l'incidence du projet sur la qualité de la Trambouze n'est pas significative compte tenu de la dilution dans ce cours d'eau.

▶ Etude de faisabilité pour l'adaptation des seuils chimiques de la mise en dépôt des déchets inertes (inertes +)

Annexes

ANNEXES

Annexe 1. Fiches de prélèvement des échantillons de sol

Cette annexe contient 06 pages.

GINGER BURGEAP		SOGRAP / Thizy-les-Bourgs / A51738		Annexe
BURGEAP		FICHE D'ÉCHANTILLONNAGE DE SOLS	RDMCCE02399 CDMCCE203823	
Sondage n°: FG1 Intervenant BURGEAP: Date: 02/04/2020 Condition météorologique:	JENM / AURE Heure : 12:00 Ensoleillé 8°C	Sous-traitant : Non concerné (prélèvement carrière) Technique de sondage : Profondeur atteinte (m/sol) : Diamètre de forage (mm) & gaine :	Confection d'échantillon : ☑ ponctuel ☐ composite, préciser Préparation de l'échantillon : □	
Localisation du sondage X: 799055.25 Projection: Lambert93 Niveau de nappe d'un piézom	Y : 6549886.34 Z (sol) - NGF : ètre proche (si présent) :	Analyses de terrain : □ Oui ☑ Non PID * □ Réf. Matériel : XRF □ Réf. Matériel : Tubes réactifs □ Préciser tubes : Autre □ Préciser :		tique / autre)
Pz n° : Sondage pour <u>échantillons tér</u>	NS (m/sol) : moins : ☐ Oui ☐ Non	* mesure PID de l'air ambiant au poste d'échantillonnage : Doublons : □ Oui ☑ Non Laboratoire : AGROLAB	Conditionnement d'échantillons : la flacon sol brut + flac la flacon / pot sol brut e la sac la Conservation des échantillons :	
Remarques :		Date d'envoi au laboratoire : 03/04/2020	_	autre :
	PHOT		Prélèvement en haut Partie Sud-Ouest de la	de crête


GINGTR		SOGRAP / Thizy-les-Bourgs / A51738		Annexe	
BURGEAP		FICHE D'ÉCHANTILLONNAGE DE SOLS			
Sondage n°: FG2 Intervenant BURGEAP: Date: 02/04/2020 Condition météorologique:	JENM / AURE Heure : 12:20 Ensoleillé 9°C	Sous-traitant : Non concerné (prélèvement carrière) Technique de sondage : Profondeur atteinte (m/sol) : Diamètre de forage (mm) & gaine :	Confection d'échantillon : ☑ ponctuel ☐ composite, préciser	moyen les sous échantillons :	
Localisation du sondage X: 799051.82 Projection: Lambert93	Y : 6550002.33 Z (sol) - NGF :	Analyses de terrain : □ Oui ☑ Non PID * □ Réf. Matériel : XRF □ Réf. Matériel : Tubes réactifs □ Préciser tubes :	Préparation de l'échantillon : homogénéisation autre : Méthode d'échantillonnage : emporte pièce (plas		
Niveau de nappe d'un piézom Pz n° : Sondage pour <u>échantillons tér</u>	NS (m/sol) :	Autre	☑ truelle / pelle à main Conditionnement d'échantillons : ☐ flacon sol brut + flac ☑ flacon / pot sol brut s	on méthanol	
Remarques :		Laboratoire : AGROLAB Date d'envoi au laboratoire : 03/04/2020	Conservation des échantillons :	autre:	
	PHOT	OS	OBSERVATIONS ET	MESURES	
			Prélèvement en haut Partie Nord-Ouest de l		

GINGER BURGEAP	SOGRAP / Thizy-les-Bourgs / A51738				
BURGEAP	FICHE D'ÉCHANTILLONNAGE DE SOLS				
Sondage n°: FG3 Intervenant BURGEAP: JENM / AURE Date: 02/04/2020 Heure: 12:30 Condition météorologique: Ensoleillé 9°C Localisation du sondage X: 799041.53 Y:6549938.96 Projection: Lambert93 Z (sol) - NGF: Niveau de nappe d'un piézomètre proche (si présent): Pz n°: NS (m/sol): Sondage pour échantillons témoins: □ Qui ☑ Non		Sous-traitant: Non concerné (prélèvement carrière) Technique de sondage: Profondeur atteinte (m/sol): Diamètre de forage (mm) & gaine: Analyses de terrain: □ Oui ☑ Non PID * □ Réf. Matériel: XRF □ Réf. Matériel: Tubes réactifs □ Préciser tubes: Autre □ Préciser: * mesure PID de l'air ambiant au poste d'échantillonnage: Doublons: □ Oui ☑ Non	Confection d'échantillon :	aucune tri (<0,5cm / <2cm) que / autre) / autre on méthanol	
Remarques :	IIOIIS . E Cui E Noi	Laboratoire : AGROLAB Date d'envoi au laboratoire : 03/04/2020	sac Conservation des échantillons :	autre :	
	PHO	TOS	OBSERVATIONS ET	MESURES	
			Prélèvement en haut Partie Ouest de la d		

GINGER BURGEAP		SOGRAP / Thizy-les-Bourgs / A51738		Annexe
BURGEAP		FICHE D'ÉCHANTILLONNAGE DE SOLS		RDMCCE02399 CDMCCE203823
Sondage n°: FG4 Intervenant BURGEAP: JENM / AURE Date: 02/04/2020 Heure: 12:40 Condition météorologique: Ensoleillé 11°C Localisation du sondage X: 799179.02 Y:6549949.03 Projection: Lambert93 Z (sol) - NGF: Niveau de nappe d'un piézomètre proche (si présent): Pz n°: NS (m/sol): Sondage pour échantillons témoins: □ Oui ☑ Non		Sous-traitant: Non concerné (prélèvement carrière) Technique de sondage: Profondeur atteinte (m/sol): Diamètre de forage (mm) & gaine: Analyses de terrain: □ Oui ☑ Non PID * □ Réf. Matériel: XRF □ Réf. Matériel: Tubes réactifs □ Préciser tubes: Autre □ Préciser: * mesure PID de l'air ambiant au poste	Confection d'échantillon : ☐ ponctuel ☐ moyen ☐ composite, préciser les sous écha Préparation de l'échantillon : ☐ aucune ☐ homogénéisation ☐ tri (<0,5cm / · ☐ autre : Méthode d'échantillonnage : ☐ emporte pièce (plastique / autre) ☐ truelle / pelle à main / autre Conditionnement d'échantillons : ☐ flacon sol brut + flacon méthanol ☐ flacon / pot sol brut seul (PE / verr	
Remarques :		Laboratoire : AGROLAB Date d'envoi au laboratoire : 03/04/2020	Conservation des échantillons :	autre:
	PHOT	OS	OBSERVATIONS ET	MESURES
			Prélèvement en bas de la carrière, délimitation du casier d	front de taille dans la

GINGER BURGEAP	SOGRAP / Thizy-les-Bourgs / A51738				
BURGEAP		FICHE D'ÉCHANTILLONNAGE DE SOLS		RDMCCE02399 CDMCCE203823	
Sondage n°: FG5 Intervenant BURGEAP: Date: 02/04/2020 Condition météorologique: Localisation du sondage X: 799167.36 Projection: Lambert93	JENM / AURE Heure : 12:45 Ensoleillé 12°C Y :6549959.78 Z (sol) - NGF :	Sous-traitant: Non concerné (prélèvement carrière) Technique de sondage: Profondeur atteinte (m/sol): Diamètre de forage (mm) & gaine: Analyses de terrain: □ Oui ☑ Non PID * □ Réf. Matériel: XRF □ Réf. Matériel: Tubes réactifs □ Préciser tubes:	□ composite, préciser	aucune tri (<0,5cm / <2cm)	
Niveau de nappe d'un piézomé Pz n° :	etre proche (si présent) : NS (m/sol) :	Autre ☐ Préciser : * mesure PID de l'air ambiant au poste d'échantillonnage :	☑ truelle / pelle à mair Conditionnement d'échantillons : ☐ flacon sol brut + flac		
Sondage pour <u>échantillons tér</u> Remarques :	<u>noins</u> : ☐ Oui ☑ Non	Doublons : ☐ Oui ☑ Non Laboratoire : AGROLAB Date d'envoi au laboratoire : 03/04/2020	Conservation des échantillons :	seul (PE / verre) l autre : l autre :	
	PH	OTOS	OBSERVATIONS ET	MESURES	
			Prélèvement en bas de la carrière délimitation du casier	,	

GINGER BURGEAP	SOGRAP / Thizy-les-Bourgs / A51738				
BURGEAP		FICHE D'ÉCHANTILLONNAGE DE SOLS		RDMCCE02399 CDMCCE203823	
Sondage n°: FG6 Intervenant BURGEAP: Date: 02/04/2020 Condition météorologique:	JENM / AURE Heure : 12:55 Ensoleillé 13°C	Sous-traitant : Non concerné (prélèvement carrière) Technique de sondage : Profondeur atteinte (m/sol) : Diamètre de forage (mm) & gaine :	Confection d'échantillon : ☑ ponctuel ☐ composite, préciser	moyen les sous échantillons	
Localisation du sondage X: 799144.25 Projection: Lambert93 Niveau de nappe d'un piézome Pz n°:	NS (m/sol) :	Analyses de terrain : □ Oui □ Non PID * □ Réf. Matériel : XRF □ Réf. Matériel : Tubes réactifs □ Préciser tubes : Autre □ Préciser : * mesure PID de l'air ambiant au poste	Préparation de l'échantillon : homogénéisation autre : Méthode d'échantillonnage : emporte pièce (plas truelle / pelle à main Conditionnement d'échantillons :	tri (<0,5cm / <2cm) tique / autre) / autre on méthanol	
Sondage pour <u>échantillons tér</u> <u>Remarques</u> :	<u>noins</u> : □ Oui ☑ Non	Doublons : ☐ Oui ☑ Non Laboratoire : AGROLAB Date d'envoi au laboratoire : 03/04/2020	Conservation des échantillons :	autre : autre :	
	PHOT		Prélèvement en bas de la carrière, délimitation du casier d	front de taille dans la	

Annexe 2. Bordereaux d'analyses des échantillons de sol

Cette annexe contient 26 pages.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

BURGEAP (LYON 69) Madame Aurore REFLOCH 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 15.04.2020 N° Client 35004351

accrédités sont signalés par le symbole « * ». **RAPPORT D'ANALYSES 933519 - 691282**

n° Cde 933519 Thizy-les-Bourgs - Sol - BC20-1663 - CDMCCE203823 - AURE

N° échant. 691282 Solide / Eluat

Projet 68509 Thizy-les-Bourgs K3+

Date de validation 06.04.2020 Prélèvement 02.04.2020 Prélèvement par: Client Spécification des échantillons FG1

	Unité	Résultat	Limit d. Quant.	Incert. Résultat %	Méthode
Lixiviation					
Lixiviation (EN 12457-2)		0			NF EN 12457-2
Prétraitement des échantillons					
Masse échantillon total inférieure à 2 kg	kg	° 0,67	0		
Prétraitement de l'échantillon		0			Conforme à NEN-EN 16179
Broyeur à mâchoires		0			méthode interne
Matière sèche	%	° 99,6	0,01	+/- 1	NEN-EN15934; EN12880
Calcul des Fractions solubles					
Antimoine cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05		selon norme lixiviation
Arsenic cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05		selon norme lixiviation
Baryum cumulé (var. L/S) *	mg/kg Ms	0 - 0,1	0,1		selon norme lixiviation
Cadmium cumulé (var. L/S) *	mg/kg Ms	0 - 0,001	0,001		selon norme lixiviation
Chlorures cumulé (var. L/S) *	mg/kg Ms	19	1		selon norme lixiviation
Chrome cumulé (var. L/S) *	mg/kg Ms	0,03	0,02		selon norme lixiviation
COT cumulé (var. L/S) *	mg/kg Ms	12	10		selon norme lixiviation
Cuivre cumulé (var. L/S) *	mg/kg Ms	0 - 0,02	0,02		selon norme lixiviation
Fluorures cumulé (var. L/S) *	mg/kg Ms	2,0	1		selon norme lixiviation
Fraction soluble cumulé (var. L/S) *	mg/kg Ms	0 - 1000	1000		selon norme lixiviation
Indice phénol cumulé (var. L/S) *	mg/kg Ms	0 - 0,1	0,1		selon norme lixiviation
Mercure cumulé (var. L/S) *	mg/kg Ms	0 - 0,0003	0,0003		selon norme lixiviation
Molybdène cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05		selon norme lixiviation
Nickel cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05		selon norme lixiviation
Plomb cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05		selon norme lixiviation
Sélénium cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05		selon norme lixiviation
Sulfates cumulé (var. L/S) *	mg/kg Ms	64	50		selon norme lixiviation
Zinc cumulé (var. L/S) *	mg/kg Ms	0 - 0,02	0,02		selon norme lixiviation

Prélèvement par:	Clie					
Spécification des échantillons	FG ²	1				
Prelevement par: Spécification des échantillons Lixiviation Lixiviation (EN 12457-2) Prétraitement des échantillo Masse échantillon total inférieure à 2 kg Prétraitement de l'échantillon Broyeur à mâchoires Matière sèche	Unité		Résultat	Limit d. Quant.	Incert. Résultat %	Méthode
Lixiviation						
Lixiviation (EN 12457-2)		0				NF EN 12457-2
Prétraitement des échantillo	ns					
Masse échantillon total inférieure à 2 kg	kg	0	0,67	0		
Prétraitement de l'échantillon	- Ng	0	0,07			Conforme à NEN-EN 1617
Broyeur à mâchoires		0				méthode interne
Matière sèche	%	0	99,6	0,01	+/- 1	NEN-EN15934; EN1288
Calcul des Fractions soluble Antimoine cumulé (var. L/S) *			00,0	0,01	., .	11211 2111000 1, 2111200
Antimoine cumulé (var. L/S) *	mg/kg Ms		0 - 0,05	0,05		selon norme lixiviation
Arsenic cumulé (var. L/S) *	mg/kg Ms		0 - 0,05	0,05		selon norme lixiviation
Arsenic cumulé (var. L/S) * Baryum cumulé (var. L/S) *	mg/kg Ms		0 - 0,03	0,03		selon norme lixiviation
Cadmium cumulé (var. L/S) *	mg/kg Ms		0 - 0,001	0,001		selon norme lixiviation
Chlorures cumulé (var. L/S) *	mg/kg Ms		19	1		selon norme lixiviation
Chrome cumulé (var. L/S) *	mg/kg Ms		0,03	0,02		selon norme lixiviation
COT cumulé (var. L/S) *	mg/kg Ms		12	10		selon norme lixiviation
Cuivre cumulé (var. L/S) *	mg/kg Ms		0 - 0.02	0,02		selon norme lixiviation
Fluorures cumulé (var. L/S) *	mg/kg Ms		2,0	1		selon norme lixiviation
Fraction soluble cumulé (var. L/S) *	mg/kg Ms		0 - 1000	1000		selon norme lixiviation
Indice phénol cumulé (var. L/S) *	mg/kg Ms		0 - 0,1	0,1		selon norme lixiviation
Mercure cumulé (var. L/S) *	mg/kg Ms		0 - 0,0003	0,0003		selon norme lixiviation
Molybdène cumulé (var. L/S) *	mg/kg Ms		0 - 0,05	0,05		selon norme lixiviation
Nickel cumulé (var. L/S) *	mg/kg Ms		0 - 0,05	0,05		selon norme lixiviation
Plomb cumulé (var. L/S) *	mg/kg Ms		0 - 0,05	0,05		selon norme lixiviation
Sélénium cumulé (var. L/S) *	mg/kg Ms		0 - 0,05	0,05		selon norme lixiviation
Sulfates cumulé (var. L/S) *	mg/kg Ms		64	50		selon norme lixiviation
Zinc cumulé (var. L/S) *	mg/kg Ms		0 - 0,02	0,02		selon norme lixiviation
Analyses Physico-chimiques	, , ,		,-	- , -	1	-
pH-H2O		0	11,0	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
COT Carbone Organique Total	mg/kg Ms		1700	1000	+/- 16	conforme ISO 10694 (200
Prétraitement pour analyses	, , ,					,
Minéralisation à l'eau régale		0				NF-EN 16174; NF EN 13657 (déchets)
Cadmium cumulé (var. L/S) * Chlorures cumulé (var. L/S) * Chrome cumulé (var. L/S) * COT cumulé (var. L/S) * Cuivre cumulé (var. L/S) * Fluorures cumulé (var. L/S) * Fraction soluble cumulé (var. L/S) * Indice phénol cumulé (var. L/S) * Mercure cumulé (var. L/S) * Molybdène cumulé (var. L/S) * Nickel cumulé (var. L/S) * Plomb cumulé (var. L/S) * Selénium cumulé (var. L/S) * Sulfates cumulé (var. L/S) * Zinc cumulé (var. L/S) * Zinc cumulé (var. L/S) * Analyses Physico-chimiques pH-H2O COT Carbone Organique Total Prétraitement pour analyses Minéralisation à l'eau régale Métaux					<u>'</u>	
						page 1 de

Date 15.04.2020

N° Client 35004351

RAPPORT D'ANALYSES 933519 - 691282

Lloitá	Pácultat	Limit d.	Incert.	Méthode
Office	Nesulai	Quant.	1163uitat /0	Wethode
mg/kg Ms	1,6	0,5	+/- 10	Conforme à EN-ISO 11885, EN 16174
mg/kg Ms	9,3	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
mg/kg Ms	12	1	+/- 12	Conforme à EN-ISO 11885, EN 16174
mg/kg Ms	0,3	0,1	+/- 21	Conforme à EN-ISO 11885, EN 16174
mg/kg Ms	7,1	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
mg/kg Ms	2,1	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
mg/kg Ms	5,4	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
mg/kg Ms	13	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
mg/kg Ms	26	1	+/- 22	Conforme à EN-ISO 11885, EN 16174
	mg/kg Ms	mg/kg Ms 1,6 mg/kg Ms 9,3 mg/kg Ms 12 mg/kg Ms 0,3 mg/kg Ms 7,1 mg/kg Ms 2,1 mg/kg Ms <0,05	mg/kg Ms 1,6 0,5 mg/kg Ms 9,3 1 mg/kg Ms 12 1 mg/kg Ms 0,3 0,1 mg/kg Ms 7,1 0,2 mg/kg Ms 2,1 0,2 mg/kg Ms <0,05	mg/kg Ms 1,6 0,5 +/- 10 mg/kg Ms 9,3 1 +/- 15 mg/kg Ms 12 1 +/- 12 mg/kg Ms 0,3 0,1 +/- 21 mg/kg Ms 7,1 0,2 +/- 12 mg/kg Ms 2,1 0,2 +/- 20 mg/kg Ms <0,05

Hydrocarbures	A romatiques	Polycycliques	(180)
nvorocaroures	Aromatiques	Polycychiques	แอเม

Naphtalène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Acénaphtène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Fluorène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Phénanthrène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Anthracène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Pyrène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Chrysène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.		équivalent à CEN/TS 16181
Somme HAP (VROM)	mg/kg Ms	n.d.		équivalent à CEN/TS 16181
HAP (EPA) - somme	mg/kg Ms	n.d.		équivalent à CEN/TS 16181

Composés aromatiques

mg/kg Ms	<0,050	0,05	Conforme à ISO 22155
mg/kg Ms	<0,050	0,05	Conforme à ISO 22155
mg/kg Ms	<0,050	0,05	Conforme à ISO 22155
mg/kg Ms	<0,10	0,1	Conforme à ISO 22155
mg/kg Ms	<0,050	0,05	Conforme à ISO 22155
mg/kg Ms	n.d.		Conforme à ISO 22155
mg/kg Ms	n.d.		Conforme à ISO 22155
	mg/kg Ms mg/kg Ms mg/kg Ms mg/kg Ms mg/kg Ms mg/kg Ms	mg/kg Ms <0,050 mg/kg Ms <0,050	mg/kg Ms <0,050 0,05 mg/kg Ms <0,050

COHV

	Unité	Résultat	Limit d. Quant.	Incert. Résultat %	Méthode
Antimoine (Sb)	mg/kg Ms	1,6	0,5	+/- 10	Conforme à EN-ISO 11885, E
		•	1	+/- 15	16174 Conforme à EN-ISO 11885, I
Arsenic (As)	mg/kg Ms	9,3			16174
Baryum (Ba)	mg/kg Ms	12	1	+/- 12	Conforme à EN-ISO 11885, 16174
Cadmium (Cd)	mg/kg Ms	0,3	0,1	+/- 21	Conforme à EN-ISO 11885, 16174
Chrome (Cr)	mg/kg Ms	7,1	0,2	+/- 12	Conforme à EN-ISO 11885,
Cuivre (Cu)	mg/kg Ms	2,1	0,2	+/- 20	16174 Conforme à EN-ISO 11885,
Mercure (Hg)	mg/kg Ms	<0,05	0,05		16174 Conforme à ISO 16772 et E
Molybdène (Mo)	mg/kg Ms	<1,0	1		16174 Conforme à EN-ISO 11885,
<u> </u>		•		./ 11	16174 Conforme à EN-ISO 11885,
Nickel (Ni)	mg/kg Ms	5,4	0,5	+/- 11	16174
Plomb (Pb)	mg/kg Ms	13	0,5	+/- 11	Conforme à EN-ISO 11885, 16174
Sélénium (Se)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, 16174
Zinc (Zn)	mg/kg Ms	26	1	+/- 22	Conforme à EN-ISO 11885, 16174
	es Polycycliques (IS	O)			10174
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Fluorène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Phénanthrène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Anthracène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
-luoranthène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Pyrène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Chrysène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
ndéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	0,00		équivalent à CEN/TS 16
	mg/kg Ms	n.d.			équivalent à CEN/TS 16
Somme HAP (VROM) HAP (EPA) - somme	mg/kg Ms	n.d.			équivalent à CEN/TS 16
Composés aromatiques	ing/kg we	ii.u.			oquivalent a OZIVIO 10
Benzène	mg/kg Ms	<0,050	0,05		Conforme à ISO 221
Toluène	mg/kg Ms	<0,050	0,05		Conforme à ISO 221
Ethylbenzène	mg/kg Ms	<0,050	0,05		Conforme à ISO 221
n,p-Xylène	mg/kg Ms	<0,10	0,03		Conforme à ISO 221
n,p-xylene o-Xylène	mg/kg Ms		0,05		Conforme à ISO 221
Somme Xylènes	mg/kg Ms	<0,050	0,03		
BTEX total *	mg/kg Ms	n.d. n.d.			Conforme à ISO 2219 Conforme à ISO 2219
COHV	<u> </u>				
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02		Conforme à ISO 221
Dichlorométhane	mg/kg Ms	<0,05	0,05		Conforme à ISO 221
Frichlorométhane	mg/kg Ms	<0,05	0,05	+	Conforme à ISO 2215

IESTING F**IX RvA** L 005

Kamer van Koophandel Nr. 08110898 ppa. Marc VAT/BTW-ID-Nr.: NL 811132559 B01 Directeur ppa. Marc Dr. Paul V

Date 15.04.2020

N° Client 35004351

RAPPORT D'ANALYSES 933519 - 691282

· *	Spécification des échantillons	FG1				
* * •		Unité	Résultat	Limit d. Quant.	Incert. Résultat %	Méthode
symbole	Tétrachlorométhane	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
Ϋ́	Trichloroéthylène	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
<u>е</u>	Tétrachloroéthylène	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
par le	1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
S	1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
signalés	1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1		Conforme à ISO 22155
igi	1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
Ħ	cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025		Conforme à ISO 22155
S	1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1		ISO 22155
ités	Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025		Conforme à ISO 22155
èd	Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.			Conforme à ISO 22155
accrédités sont	Hydrocarbures totaux (ISO)					
5	Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20		ISO 16703
S	Fraction C10-C12 *	mg/kg Ms	<4,0	4		ISO 16703
Itat	Fraction C12-C16 *	mg/kg Ms	<4,0	4		ISO 16703
ésu	Fraction C16-C20 *	mg/kg Ms	<2,0	2		ISO 16703
s/r	Fraction C20-C24 *	mg/kg Ms	<2,0	2		ISO 16703
tre	Fraction C24-C28 *	mg/kg Ms	<2,0	2		ISO 16703
Ж	Fraction C28-C32 *	mg/kg Ms	<2,0	2		ISO 16703
are	Fraction C32-C36 *	mg/kg Ms	<2,0	2		ISO 16703
Sp	Fraction C36-C40 *	mg/kg Ms	<2,0	2		ISO 16703
Seuls les paramètres/résultats non	Polychlorobiphényles					
šeu	Somme 6 PCB	mg/kg Ms	n.d.			NEN-EN 16167
	Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.			NEN-EN 16167
17025 :2005.	PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
ro ¿i	PCB (52)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
02	PCB (101)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
17	PCB (118)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
Ш	PCB (138)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
õ	PCB (153)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
뜨	PCB (180)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
accrédités selon ISO/IEC	Analyses sur éluat après lixivi	ation				
SS	L/S cumulé	ml/g	10,0	0,1		selon norme lixiviation
dité	Conductivité électrique	μS/cm	110	5	+/- 10	selon norme lixiviation
Sré(pH		10,6	0	+/- 5	selon norme lixiviation
a	Température	°C	21,3	0		selon norme lixiviation
sont	Analyses Physico-chimiques	sur éluat				
ij	Résidu à sec	mg/l	<100	100		Equivalent à NF EN ISO 15216
document	Fluorures (F)	mg/l	0,2	0,1	+/- 10	Conforme à ISO 10359-1, conforme
ಠ	Indice phénol	mg/l	<0,010	0,01		à EN 16192 NEN-EN 16192
Ge d	Chlorures (CI)	mg/l	1,9	0,1	+/- 10	Conforme à ISO 15923-1
S	Sulfates (SO4)	mg/l	6,4	5	+/- 10	Conforme à ISO 15923-1
dar	COT	mg/l	1,2	1	+/- 10	conforme EN 16192
iés	Métaux sur éluat	,	.,_	· ·		1 22
育	Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2
ž.	, ,		-			(2004)
itres	Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
ıramè	Baryum (Ba)	μg/l	<10	10		Conforme à EN-ISO 17294-2 (2004)
Les paramètres indiqués dans						page 3 de 4

page 3 de 4 **RvA** L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Date 15.04.2020

N° Client 35004351

RAPPORT D'ANALYSES 933519 - 691282

Spécification des échantillons FG1 les paramètres/résultats non accrédités sont signalés par le symbole « * ».

	Unité	Résultat	Limit d. Quant.	Incert. Résultat %	Méthode
Cadmium (Cd)	µg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	3,1	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Mercure (Hg)	μg/l	<0,03	0,03		NEN-EN 1483 (2007)
Molybdène (Mo)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	µg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. Le calcul de l'incertitude de mesure combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l'expression de l'incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d'élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance). Les détails concernant l'incertitude de mesure seront fournis sur demande.

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Seuls I

-es paramètres indiqués dans ce document sont accrédités selon ISO/IEC 17025 :2005.

analyses BETX/COHV effectuées après broyage de l'échantillon

Début des analyses: 06.04.2020 Fin des analyses: 15.04.2020

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

Dognenet

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

BURGEAP (LYON 69) Madame Aurore REFLOCH 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 15.04.2020 N° Client 35004351

accrédités sont signalés par le symbole « * ». **RAPPORT D'ANALYSES 933519 - 691283**

n° Cde 933519 Thizy-les-Bourgs - Sol - BC20-1663 - CDMCCE203823 - AURE

N° échant. 691283 Solide / Eluat

Projet 68509 Thizy-les-Bourgs K3+

Date de validation 06.04.2020 Prélèvement 02.04.2020 Prélèvement par: Client Spécification des échantillons FG2

Limit d. Incert. Unité Méthode Résultat Quant. Résultat %

Lixiviation

)				
,	Lixiviation (EN 12457-2)	•		

Lixiviation (EN 12457-2)		۰				NF EN 12457-2
Prétraitement des échantillon	S					
Masse échantillon total inférieure à 2 kg	ka	•	0.59	0		

wasse echantillon total interieure a 2 kg	кg		0,59	U		
Prétraitement de l'échantillon	-	0				Conforme à NEN-EN 16179
Broyeur à mâchoires		0				méthode interne
Matière sèche	%	0	98.4	0.01	4/- 1	NEN-EN15934: EN12880

Calcul des Fractions solubles

₹	Calcul des l'Iactions solubles				
į	Antimoine cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05	selon norme lixiviation
3	Arsenic cumulé (var. L/S) *	mg/kg Ms	0,08	0,05	selon norme lixiviation
_	Baryum cumulé (var. L/S) *	mg/kg Ms	0 - 0,1	0,1	selon norme lixiviation
ږ	Cadmium cumulé (var. L/S) *	mg/kg Ms	0 - 0,001	0,001	selon norme lixiviation
=	Chlorures cumulé (var. L/S) *	mg/kg Ms	17	1	selon norme lixiviation
2	Chrome cumulé (var. L/S) *	mg/kg Ms	0,02	0,02	selon norme lixiviation
5	COT cumulé (var. L/S) *	mg/kg Ms	41	10	selon norme lixiviation
ה מ	Cuivre cumulé (var. L/S) *	mg/kg Ms	0,03	0,02	selon norme lixiviation
Ď	Fluorures cumulé (var. L/S) *	mg/kg Ms	4,0	1	selon norme lixiviation
5	Fraction soluble cumulé (var. L/S) *	mg/kg Ms	0 - 1000	1000	selon norme lixiviation
3	Indice phénol cumulé (var. L/S) *	mg/kg Ms	0 - 0,1	0,1	selon norme lixiviation
ğ	Mercure cumulé (var. L/S) *	mg/kg Ms	0 - 0,0003	0,0003	selon norme lixiviation
5	Molybdène cumulé (var. L/S) *	ma/ka Ms	0 - 0.05	0.05	selon norme lixiviation

_	iviercule cultiule (val. L/O)	ing/kg wis	0 - 0,0003	0,0003	SCIOIT HOTTIC HARVIAGOT
ő	Molybdène cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05	selon norme lixiviation
Ë	Nickel cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05	selon norme lixiviation
E	Plomb cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05	selon norme lixiviation
\mathbf{z}	Sélénium cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05	selon norme lixiviation
ğ	Sulfates cumulé (var. L/S) *	mg/kg Ms	0 - 50	50	selon norme lixiviation

Arsenic cumulé (var. L/S) * mg/kg Ms			,	-,-		, , , , , , , , , , , , , , , , , , , ,
Arsenic cumulé (var. L/S) * mg/kg Ms 0,08 0,05 selon norme lixivia Baryum cumulé (var. L/S) * mg/kg Ms 0 - 0,1 0,1 selon norme lixivia Cadmium cumulé (var. L/S) * mg/kg Ms 0 - 0,001 0,001 selon norme lixivia Chlorures cumulé (var. L/S) * mg/kg Ms 17 1 selon norme lixivia Chrome cumulé (var. L/S) * mg/kg Ms 0,02 0,02 selon norme lixivia Corr cumulé (var. L/S) * mg/kg Ms 0,02 0,02 selon norme lixivia Selon norme lixivia Selon norme lixivia Selon norme lixivia Ms 0,03 0,02 selon norme lixivia Ms 0,01 selon norme lixivia Norme cumulé (var. L/S) * mg/kg Ms 0 - 1000 1000 selon norme lixivia Molybdène cumulé (var. L/S) * mg/kg Ms 0 - 0,003 0,003 selon norme lixivia Molybdène cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Selénium cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Selénium cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Selénium cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Selénium cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Selénium cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Selénium cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Selénium cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Selénium cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Selénium cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Selénium cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Selénium cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Selénium cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Selénium cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Selénium cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Selénium cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Seléni	Calcul des Fractions solubles					
Cadmium cumulé (var. L/S) * mg/kg Ms	Antimoine cumulé (var. L/S) *		0 - 0,05	0,05		selon norme lixiviation
Cadmium cumulé (var. L/S) * mg/kg Ms	Arsenic cumulé (var. L/S) *	mg/kg Ms	0,08	0,05		selon norme lixiviation
Chlorures cumulé (var. L/S) * mg/kg Ms 0,02 0,02 selon norme lixivia Chrome cumulé (var. L/S) * mg/kg Ms 0,03 0,02 selon norme lixivia Selenium cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Selenium cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Selenium cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Selenium cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Selenium cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Selenium cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Selenium cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Selenium cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Selenium cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Selenium cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Selenium cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Selenium cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Selenium cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Selenium cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Selenium cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Selenium cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Selenium cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Selenium cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Selenium cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Selenium cumulé (var. L/S) * mg/kg Ms 0 - 0	Baryum cumulé (var. L/S) *	mg/kg Ms	0 - 0,1	0,1		selon norme lixiviation
Fluorures cumulé (var. L/S) * mg/kg Ms	Cadmium cumulé (var. L/S) *	mg/kg Ms	0 - 0,001	0,001		selon norme lixiviation
Fluorures cumulé (var. L/S) * mg/kg Ms	Chlorures cumulé (var. L/S) *	mg/kg Ms	17	1		selon norme lixiviation
Fluorures cumulé (var. L/S) * mg/kg Ms	Chrome cumulé (var. L/S) *	mg/kg Ms	0,02	0,02		selon norme lixiviation
Fluorures cumulé (var. L/S) * mg/kg Ms	COT cumulé (var. L/S) *	mg/kg Ms	41	10		selon norme lixiviation
Fraction soluble cumulé (var. L/S) * mg/kg Ms	Cuivre cumulé (var. L/S) *	mg/kg Ms	0,03	0,02		selon norme lixiviation
Nickel cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Plomb cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Sélénium cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Sulfates cumulé (var. L/S) * mg/kg Ms 0 - 50 50 selon norme lixivia Zinc cumulé (var. L/S) * mg/kg Ms 0 - 0,02 0,02 selon norme lixivia Analyses Physico-chimiques	Fluorures cumulé (var. L/S) *	mg/kg Ms	4,0	1		selon norme lixiviation
Nickel cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Plomb cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Sélénium cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Sulfates cumulé (var. L/S) * mg/kg Ms 0 - 50 50 selon norme lixivia Zinc cumulé (var. L/S) * mg/kg Ms 0 - 0,02 0,02 selon norme lixivia Analyses Physico-chimiques	Fraction soluble cumulé (var. L/S) *	mg/kg Ms	0 - 1000	1000		selon norme lixiviation
Nickel cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Plomb cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Sélénium cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Sulfates cumulé (var. L/S) * mg/kg Ms 0 - 50 50 selon norme lixivia Zinc cumulé (var. L/S) * mg/kg Ms 0 - 0,02 0,02 selon norme lixivia Analyses Physico-chimiques	Indice phénol cumulé (var. L/S) *	mg/kg Ms	0 - 0,1	0,1		selon norme lixiviation
Nickel cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Plomb cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Sélénium cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Sulfates cumulé (var. L/S) * mg/kg Ms 0 - 50 50 selon norme lixivia Zinc cumulé (var. L/S) * mg/kg Ms 0 - 0,02 0,02 selon norme lixivia Analyses Physico-chimiques	Mercure cumulé (var. L/S) *	mg/kg Ms	0 - 0,0003	0,0003		selon norme lixiviation
Nickel cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Plomb cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Sélénium cumulé (var. L/S) * mg/kg Ms 0 - 0,05 0,05 selon norme lixivia Sulfates cumulé (var. L/S) * mg/kg Ms 0 - 50 50 selon norme lixivia Zinc cumulé (var. L/S) * mg/kg Ms 0 - 0,02 0,02 selon norme lixivia Analyses Physico-chimiques	Molybdène cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05		selon norme lixiviation
Zinc cumulé (var. L/S) * mg/kg Ms 0 - 0,02 0,02 selon norme lixivia Analyses Physico-chimiques			0 - 0,05			selon norme lixiviation
Zinc cumulé (var. L/S) * mg/kg Ms 0 - 0,02	Plomb cumulé (var. L/S) *		0 - 0,05	0,05		selon norme lixiviation
Zinc cumulé (var. L/S) * mg/kg Ms 0 - 0,02 0,02 selon norme lixivia Analyses Physico-chimiques	Sélénium cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05		selon norme lixiviation
Analyses Physico-chimiques	Odnates carriale (var. 170)		0 - 50	50		selon norme lixiviation
Analyses Physico-chimiques pH-H2O	Zinc cumulé (var. L/S) *	mg/kg Ms	0 - 0,02	0,02		selon norme lixiviation
9 PH-H2O ° 10,0 0,1 +/- 10 Cf. NEN-ISO 10390	Analyses Physico-chimiques					
uniquement)	pH-H2O		° 10,0	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
COT Carbone Organique Total mg/kg Ms 13000 1000 +/- 16 conforme ISO 10694	COT Carbone Organique Total	mg/kg Ms	13000	1000	+/- 16	conforme ISO 10694 (2008
Prétraitement pour analyses des métaux	Prétraitement pour analyses	des métaux				
Minéralisation à l'eau régale ° NF-EN 16174; NF EN 1 (déchets)	Minéralisation à l'eau régale					NF-EN 16174; NF EN 13657 (déchets)
Métaux	Métaux					
page						page 1 de

les paramètres/résultats non

Seuls I

Date 15.04.2020

N° Client 35004351

RAPPORT D'ANALYSES 933519 - 691283

	Unité	Résultat	Limit d. Quant.	Incert. Résultat %	Méthode
Antimoine (Sb)	mg/kg Ms	0,7	0,5	+/- 10	Conforme à EN-ISO 11885, EN 16174
Arsenic (As)	mg/kg Ms	11	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Baryum (Ba)	mg/kg Ms	25	1	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	11	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	3,2	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Molybdène (Mo)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
Nickel (Ni)	mg/kg Ms	8,2	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	47	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Sélénium (Se)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	30	1	+/- 22	Conforme à EN-ISO 11885, EN 16174

Hydrocarbures	Aromatiques	Polycycliques	(190)
nvorocaroures	Aromanoues	POIVCVCHOUES	แอเม

Naphtalène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Acénaphtène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Fluorène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Phénanthrène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Anthracène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Pyrène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Chrysène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.		équivalent à CEN/TS 16181
Somme HAP (VROM)	mg/kg Ms	n.d.		équivalent à CEN/TS 16181
HAP (EPA) - somme	mg/kg Ms	n.d.		équivalent à CEN/TS 16181

Composés aromatiques

=					
Ę	Benzène	mg/kg Ms	<0,050	0,05	Conforme à ISO 22155
ğ	Toluène	mg/kg Ms	<0,050	0,05	Conforme à ISO 22155
g	Ethylbenzène	mg/kg Ms	<0,050	0,05	Conforme à ISO 22155
S	m,p-Xylène	mg/kg Ms	<0,10	0,1	Conforme à ISO 22155
g	o-Xylène	mg/kg Ms	<0,050	0,05	Conforme à ISO 22155
es	Somme Xylènes	mg/kg Ms	n.d.		Conforme à ISO 22155
<u></u>	BTEX total *	mg/kg Ms	n.d.		Conforme à ISO 22155

COHV

	Unité	Résultat	Limit d. Quant.	Incert. Résultat %	Méthode
Antimoine (Sb)	mg/kg Ms	0,7	0,5	+/- 10	Conforme à EN-ISO 11885, I
Arsenic (As)	mg/kg Ms	11	1	+/- 15	16174 Conforme à EN-ISO 11885, I
					16174
Baryum (Ba)	mg/kg Ms	25	1	+/- 12	Conforme à EN-ISO 11885, I 16174
admium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, 16174
Chrome (Cr)	mg/kg Ms	11	0,2	+/- 12	Conforme à EN-ISO 11885,
Cuivre (Cu)	mg/kg Ms	3,2	0,2	+/- 20	16174 Conforme à EN-ISO 11885, I
Mercure (Hg)	mg/kg Ms	<0,05	0,05		16174 Conforme à ISO 16772 et E
Molybdène (Mo)	mg/kg Ms	<1,0	1		16174 Conforme à EN-ISO 11885,
· , ,				. / 44	16174 Conforme à EN-ISO 11885,
lickel (Ni)	mg/kg Ms	8,2	0,5	+/- 11	16174
Plomb (Pb)	mg/kg Ms	47	0,5	+/- 11	Conforme à EN-ISO 11885, 16174
Sélénium (Se)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, I 16174
Zinc (Zn)	mg/kg Ms	30	1	+/- 22	Conforme à EN-ISO 11885, I
	es Polycycliques (IS	O)			16174
laphtalène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 161
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16°
Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 161
-luorène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16°
Phénanthrène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Anthracène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16°
-luoranthène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 161
Pyrène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 161
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 161
Chrysène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 161
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 161
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 161
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 161
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 161
ndéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 161
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	- ,		équivalent à CEN/TS 161
	mg/kg Ms	n.d.			équivalent à CEN/TS 16
Somme HAP (VROM) HAP (EPA) - somme	mg/kg Ms	n.d.			équivalent à CEN/TS 161
Composés aromatiques	, , , ,				· ·
Benzène	mg/kg Ms	<0,050	0,05		Conforme à ISO 2215
Toluène	mg/kg Ms	<0,050	0,05		Conforme à ISO 2215
Ethylbenzène	mg/kg Ms	<0,050	0,05		Conforme à ISO 2215
n,p-Xylène	mg/kg Ms	<0,10	0,1		Conforme à ISO 2215
n,p-xylene p-Xylène	mg/kg Ms	<0,050	0,05		Conforme à ISO 2215
Somme Xylènes	mg/kg Ms	n.d.	0,03		Conforme à ISO 2215
BTEX total *	mg/kg Ms	n.d.			Conforme à ISO 2215
COHV		1			<u>'</u>
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02		Conforme à ISO 2215
Dichlorométhane	mg/kg Ms	<0,05	0,05		Conforme à ISO 2215
Frichlorométhane	mg/kg Ms	<0,05	0,05	+	Conforme à ISO 2215

page 2 de 4 IESTING GIW **RvA** L 005

Date 15.04.2020

N° Client 35004351

RAPPORT D'ANALYSES 933519 - 691283

Spécification des échantillons	FG2				
* * *		56. 11.	Limit d.	Incert.	
	Unité	Résultat	Quant.	Résultat %	Méthode
Tétrachlorométhane	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
<u>Trichloroéthylène</u>	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
<u>Tétrachloroéthylène</u>	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
1,1,2-Trichloroéthane 1,1-Dichloroéthane 1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1		Conforme à ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025		Conforme à ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1		ISO 22155
cis-1,2-Dichloroéthène 1,1-Dichloroéthylène Trans-1,2-Dichloroéthylène Somme cis/trans-1,2-Dichloroéthylènes Hydrocarbures totaux (ISO)	mg/kg Ms	<0,025	0,025		Conforme à ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.			Conforme à ISO 22155
Hydrocarbures totaux (ISO)					
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20		ISO 16703
Fraction C10-C12 *	mg/kg Ms	<4,0	4		ISO 16703
Fraction C12-C16 *	mg/kg Ms	<4,0	4		ISO 16703
Fraction C16-C20 *	mg/kg Ms	2,2	2	+/- 21	ISO 16703
Fraction C20-C24 *	mg/kg Ms	5,3	2	+/- 21	ISO 16703
Fraction C24-C28 *	mg/kg Ms	6,0	2	+/- 21	ISO 16703
Fraction C28-C32 *	mg/kg Ms	3,3	2		ISO 16703
Hydrocarbures totaux C10-C40 Fraction C10-C12 * Fraction C12-C16 * Fraction C16-C20 * Fraction C20-C24 * Fraction C24-C28 * Fraction C28-C32 * Fraction C32-C36 * Fraction C36-C40 *	mg/kg Ms	<2,0	2		ISO 16703
Fraction C36-C40 *	mg/kg Ms	<2,0	2		ISO 16703
Polychlorobiphényles					
Polychlorobiphényles Somme 6 PCB	mg/kg Ms	n.d.			NEN-EN 16167
	mg/kg Ms	n.d.			NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
Analyses sur éluat après lixiv	iation				
Somme 7 PCB (Ballschmiter) PCB (28) PCB (52) PCB (101) PCB (118) PCB (138) PCB (180) Analyses sur éluat après lixiv L/S cumulé Conductivité électrique pH Température	ml/g	10,0	0,1		selon norme lixiviation
Conductivité électrique	μS/cm	53,9	5	+/- 10	selon norme lixiviation
pΗ		9,5	0	+/- 5	selon norme lixiviation
Température	°C	21,3	0		selon norme lixiviation
Analyses Physico-chimiques	sur éluat				
	mg/l	<100	100		Equivalent à NF EN ISO 15216
Fluorures (F)	mg/l	0,4	0,1	+/- 10	Conforme à ISO 10359-1, conform à EN 16192
Résidu à sec Fluorures (F) Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192
Chlorures (CI)	mg/l	1,7	0,1	+/- 10	Conforme à ISO 15923-1
Sulfates (SO4)	mg/l	<5,0	5		Conforme à ISO 15923-1
COT	mg/l	4,1	1	+/- 10	conforme EN 16192
Métaux sur éluat		,			
Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2
Arsenic (As)	μg/l	8,0	5	+/- 10	(2004) Conforme à EN-ISO 17294-2
Baryum (Ba)	μg/l	×10	10		(2004) Conforme à EN-ISO 17294-2
Chlorures (CI) Sulfates (SO4) COT Métaux sur éluat Antimoine (Sb) Arsenic (As) Baryum (Ba)	. 0				(2004) page 3 de 4

page 3 de 4 IESTING GIW **RvA** L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Date 15.04.2020

N° Client 35004351

RAPPORT D'ANALYSES 933519 - 691283

Spécification des échantillons FG2 les paramètres/résultats non accrédités sont signalés par le symbole « * ».

	Unité	Résultat	Limit d. Quant.	Incert. Résultat %	Méthode
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	µg/l	2,2	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	µg/l	3,4	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure (Hg)	μg/l	<0,03	0,03		NEN-EN 1483 (2007)
Molybdène (Mo)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. Le calcul de l'incertitude de mesure combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l'expression de l'incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d'élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance). Les détails concernant l'incertitude de mesure seront fournis sur demande.

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Seuls I

-es paramètres indiqués dans ce document sont accrédités selon ISO/IEC 17025 :2005.

analyses BETX/COHV effectuées après broyage de l'échantillon

Début des analyses: 06.04.2020 Fin des analyses: 15.04.2020

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

Tognenet

page 4 de 4

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

BURGEAP (LYON 69) Madame Aurore REFLOCH 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 15.04.2020 N° Client 35004351

> > NF EN 12457-2

accrédités sont signalés par le symbole « * ». RAPPORT D'ANALYSES 933519 - 691284

n° Cde 933519 Thizy-les-Bourgs - Sol - BC20-1663 - CDMCCE203823 - AURE

N° échant. 691284 Solide / Eluat

Projet 68509 Thizy-les-Bourgs K3+

Date de validation 06.04.2020 Prélèvement 02.04.2020 Prélèvement par: Client Spécification des échantillons FG3

	Unité	Résultat Quant	. Résultat %	Méthode	
Lixiviation					

Z C	Prélèvement par:	Cli	ent			
3 nC	Spécification des échantillons	FG	3			
paramètres/résultats non	•	Unité		Résultat	Limit d. Quant.	Incert. Résultat %
rés		Office		Resultat	Quant.	Nesulial /
es/	Lixiviation					
ìètr	Lixiviation (EN 12457-2)		•			
ran	Prétraitement des échantillons	S				
	Masse échantillon total inférieure à 2 kg	kg	0	0,64	0	
Seuls les	Prétraitement de l'échantillon		0	•		
sln	Broyeur à mâchoires		•			
Se	Matière sèche	%	•	99,8	0,01	+/- 1
:2005.	Calcul des Fractions solubles					
5	Antimoine cumulé (var. L/S) *	mg/kg Ms		0 - 0,05	0,05	
17025	Arsenic cumulé (var. L/S) *	mg/kg Ms		0 - 0,05	0,05	
170	Baryum cumulé (var. L/S) *	mg/kg Ms		0,16	0,1	
	Cadmium cumulé (var. L/S) *	mg/kg Ms		0 - 0,001	0,001	
selon ISO/IEC	Chlorures cumulé (var. L/S) *	mg/kg Ms		18	1	
<u>8</u>	Chrome cumulé (var. L/S) *	mg/kg Ms		0 - 0,02	0,02	
o	COT cumulé (var. L/S) *	mg/kg Ms		17	10	
sel	Cuivre cumulé (var. L/S) *	mg/kg Ms		0,03	0,02	
és	Fluorures cumulé (var. L/S) *	mg/kg Ms		1,0	1	
śdit	Fraction soluble cumulé (var. L/S) *	mg/kg Ms		0 - 1000	1000	
200	Indice phénol cumulé (var. L/S) *	mg/kg Ms		0 - 0,1	0,1	
it a	Mercure cumulé (var. L/S) *	mg/kg Ms		0 - 0,0003	0,0003	
οg	Molybdène cumulé (var. L/S) *	mg/kg Ms		0 - 0,05	0,05	
Ħ	Nickel cumulé (var. L/S) *	mg/kg Ms		0 - 0,05	0,05	
me	Plomb cumulé (var. L/S) *	mg/kg Ms		0 - 0,05	0,05	
document sont accrédités	Sélénium cumulé (var. L/S) *	mg/kg Ms		0 - 0,05	0,05	
ŏ	Sulfates cumulé (var. L/S) *	mg/kg Ms		0 - 50	50	

Masse échantillon total inférieure à 2 kg	kg	•	0,64	0		
Prétraitement de l'échantillon	-	•				Conforme à NEN-EN 16179
Broyeur à mâchoires		0				méthode interne
Matière sèche	%	•	99,8	0,01	+/- 1	NEN-EN15934; EN12880

ġ	Calcul des Fractions solubles						
)	Matière sèche	%	0	99,8	0,01	+/- 1	NEN-EN15934; EN1
2	Broyeur à mâchoires		0				méthode interne

Ÿ	Antimoine cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05	selon norme lixiviation
3	Arsenic cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05	selon norme lixiviation
_	Baryum cumulé (var. L/S) *	mg/kg Ms	0,16	0,1	selon norme lixiviation
ږ	Cadmium cumulé (var. L/S) *	mg/kg Ms	0 - 0,001	0,001	selon norme lixiviation
=	Chlorures cumulé (var. L/S) *	mg/kg Ms	18	1	selon norme lixiviation
2	Chrome cumulé (var. L/S) *	mg/kg Ms	0 - 0,02	0,02	selon norme lixiviation
5	COT cumulé (var. L/S) *	mg/kg Ms	17	10	selon norme lixiviation
ה מ	Cuivre cumulé (var. L/S) *	mg/kg Ms	0,03	0,02	selon norme lixiviation
Ď	Fluorures cumulé (var. L/S) *	mg/kg Ms	1,0	1	selon norme lixiviation
5	Fraction soluble cumulé (var. L/S) *	mg/kg Ms	0 - 1000	1000	selon norme lixiviation
3	Indice phénol cumulé (var. L/S) *	mg/kg Ms	0 - 0,1	0,1	selon norme lixiviation
ğ	Mercure cumulé (var. L/S) *	mg/kg Ms	0 - 0,0003	0,0003	selon norme lixiviation
5	Molybdène cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05	selon norme lixiviation
Ĕ	Nickel cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05	selon norme lixiviation
פֿ	Plomb cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05	selon norme lixiviation
3	Sélénium cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05	selon norme lixiviation
5	Sulfates cumulé (var. L/S) *	mg/kg Ms	0 - 50	50	selon norme lixiviation
υ					

Analyses	Physico-chimiques	
Anaivses	Physico-chimiques	

4	Sullates cultitule (val. L/S)	ilig/kg ivis		0 - 30	50		Scion norme ilxiviation			
s Ge	Zinc cumulé (var. L/S) *	mg/kg Ms		0 - 0,02	0,02		selon norme lixiviation			
dan	Analyses Physico-chimiques									
nés (pH-H2O		0	9,0	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)			
gig	COT Carbone Organique Total	mg/kg Ms		2200	1000	+/- 16	conforme ISO 10694 (2008)			
SS	Prétraitement pour analyses des métaux									
nètre	Minéralisation à l'eau régale		0				NF-EN 16174; NF EN 13657 (déchets)			
arar	Métaux									
es b										
۳							page 1 de 4			

Minéralisation à l'	eau régale		0		NF-EN 16174; NF EN 13657
	Ū				(déchets)

Date

N° Client 35004351

15.04.2020

RAPPORT D'ANALYSES 933519 - 691284

	Unité	Résultat	Limit d. Quant.	Incert. Résultat %	Méthode
Antimoine (Sb)	mg/kg Ms	1,2	0,5	+/- 10	Conforme à EN-ISO 11885, EN 16174
Arsenic (As)	mg/kg Ms	7,9	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Baryum (Ba)	mg/kg Ms	35	1	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	0,2	0,1	+/- 21	Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	4,0	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	3,9	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Molybdène (Mo)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
Nickel (Ni)	mg/kg Ms	3,7	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	8,4	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Sélénium (Se)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	19	1	+/- 22	Conforme à EN-ISO 11885, EN 16174

Hvdrocarbures	Aromotiques	Dolyovaliause	(160)
Hvorocarbures	Aromatiques	Polycycliques	(150)

	Unité	Résultat	Limit d. Quant.	Incert. Résultat %	Méthode
Antimoine (Sb)	mg/kg Ms	1,2	0,5	+/- 10	Conforme à EN-ISO 11885,
		•			16174
Arsenic (As)	mg/kg Ms	7,9	1	+/- 15	Conforme à EN-ISO 11885, 16174
Baryum (Ba)	mg/kg Ms	35	1	+/- 12	Conforme à EN-ISO 11885, 16174
Cadmium (Cd)	mg/kg Ms	0,2	0,1	+/- 21	Conforme à EN-ISO 11885,
Chrome (Cr)	mg/kg Ms	4,0	0,2	+/- 12	16174 Conforme à EN-ISO 11885,
	mg/kg Ms	3,9	0,2	+/- 20	16174 Conforme à EN-ISO 11885,
Cuivre (Cu)				+/- 20	16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et 16174
Molybdène (Mo)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, 16174
Nickel (Ni)	mg/kg Ms	3,7	0,5	+/- 11	Conforme à EN-ISO 11885,
Plomb (Pb)	mg/kg Ms	8,4	0,5	+/- 11	16174 Conforme à EN-ISO 11885,
Sélénium (Se)	mg/kg Ms	<1,0		., .,	16174 Conforme à EN-ISO 11885,
		•	1		16174
Zinc (Zn)	mg/kg Ms	19	1	+/- 22	Conforme à EN-ISO 11885, 16174
Hydrocarbures Aromatiqu	es Polycycliques (IS	O)			<u> </u>
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Fluorène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Phénanthrène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Anthracène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Pyrène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Chrysène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
	mg/kg Ms		0,03		équivalent à CEN/TS 16
HAP (6 Borneff) - somme		n.d.			
Somme HAP (VROM) HAP (EPA) - somme	mg/kg Ms	n.d.			équivalent à CEN/TS 16
	mg/kg Ms	n.d.			équivalent à CEN/TS 16
Composés aromatiques		2.252	2.05		0 () 100 004
Benzène	mg/kg Ms	<0,050	0,05		Conforme à ISO 221
Toluène	mg/kg Ms	<0,050	0,05		Conforme à ISO 221
Ethylbenzène	mg/kg Ms	<0,050	0,05		Conforme à ISO 221
m,p-Xylène	mg/kg Ms	<0,10	0,1		Conforme à ISO 221
o-Xylène	mg/kg Ms	<0,050	0,05		Conforme à ISO 221
Somme Xylènes	mg/kg Ms	n.d.			Conforme à ISO 221
BTEX total *	mg/kg Ms	n.d.			Conforme à ISO 221
COHV					
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02		Conforme à ISO 221
Dichlorométhane	mg/kg Ms	<0,05	0,05		Conforme à ISO 221
Trichlorométhane	mg/kg Ms	<0,05	0,05		Conforme à ISO 221

Composés aromatiques

Benzène	mg/kg Ms	<0,050	0,05	Conforme à ISO 22155
Toluène	mg/kg Ms	<0,050	0,05	Conforme à ISO 22155
Ethylbenzène	mg/kg Ms	<0,050	0,05	Conforme à ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1	Conforme à ISO 22155
o-Xylène	mg/kg Ms	<0,050	0,05	Conforme à ISO 22155
Somme Xylènes	mg/kg Ms	n.d.		Conforme à ISO 22155
BTEX total *	mg/kg Ms	n.d.		Conforme à ISO 22155

COHV

m						
tres	Chlorure de Vinyle	mg/kg Ms	<0,02	0,02		Conforme à ISO 22155
me	Dichlorométhane	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
ara	Trichlorométhane	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
õ			•			

page 2 de 4 **RvA** L 005

Date 15.04.2020

N° Client 35004351

RAPPORT D'ANALYSES 933519 - 691284

Specif	ication des échantillons	FG3		Limit d	Incort	
; <u>)</u>		Unité	Résultat	Limit d. Quant.	Incert. Résultat %	Méthode
Tétrach Trichlo	hlorométhane	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
Trichlo	roéthylène	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
□ Tétrach	hloroéthylène	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
1,1,1-T	richloroéthane	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
1,1,2-T	richloroéthane	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
1,1-Dic	chloroéthane	mg/kg Ms	<0,10	0,1		Conforme à ISO 22155
, 1,2-Dic	chloroéthane	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
cis-1,2	-Dichloroéthène	mg/kg Ms	<0,025	0,025		Conforme à ISO 22155
1,1-Dic	chloroéthylène	mg/kg Ms	<0,10	0,1		ISO 22155
Trans-	1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025		Conforme à ISO 22155
Somme	cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.			Conforme à ISO 22155
1,1,2-T 1,1-Dic 1,2-Dic cis-1,2 1,1-Dic Trans- Somme	ocarbures totaux (ISO)					
	carbures totaux C10-C40	mg/kg Ms	<20,0	20		ISO 16703
Fractio	on C10-C12 *	mg/kg Ms	<4,0	4		ISO 16703
Fractio	on C12-C16 *	mg/kg Ms	<4,0	4		ISO 16703
Fractio	on C16-C20 *	mg/kg Ms	<2,0	2		ISO 16703
Fractio	on C20-C24 *	mg/kg Ms	<2,0	2		ISO 16703
Fractio	on C24-C28 *	mg/kg Ms	<2,0	2		ISO 16703
Fractio	on C28-C32 *	mg/kg Ms	<2,0	2		ISO 16703
Fractio	on C32-C36 *	mg/kg Ms	<2,0	2		ISO 16703
Fractio	on C36-C40 *	mg/kg Ms	<2,0	2		ISO 16703
	hlorobiphényles	, ,	,			
Somm	ne 6 PCB	mg/kg Ms	0,0020 x)			NEN-EN 16167
	ne 7 PCB (Ballschmiter)	mg/kg Ms	0,0020 ×)			NEN-EN 16167
Somm PCB (2		mg/kg Ms	0,002	0,001	+/- 27	NEN-EN 16167
PCB (5		mg/kg Ms	<0,001	0,001	,, <u>-</u> ,	NEN-EN 16167
PCB (1		mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (1	118)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (1		mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (1		mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (1		mg/kg Ms	<0,001	0,001		NEN-EN 16167
-	ses sur éluat après lixiv		, ,	-,	1	
L/S cur		ml/g	10,0	0,1		selon norme lixiviation
Condu	ctivité électrique	μS/cm	62,4	5	+/- 10	selon norme lixiviation
Hq	cuvite electrique	μο/οπ	9,2	0	+/- 5	selon norme lixiviation
Tempé	Prature	°C	20,5	0	+/- 3	selon norme lixiviation
,	ses Physico-chimiques		20,0			
			-100	100		Equivalent à NF EN ISO 15216
Résidu Fluorur Indice		mg/l mg/l	<100 0,1	100 0,1	+/- 10	Conforme à ISO 10359-1, conform
	. ,		·		1 /- 10	à EN 16192
		mg/l	<0,010	0,01		NEN-EN 16192
	res (CI)	mg/l	1,8	0,1	+/- 10	Conforme à ISO 15923-1
Sulfate	es (SO4)	mg/l	<5,0	5		Conforme à ISO 15923-1
COT		mg/l	1,7	1	+/- 10	conforme EN 16192
<u>Métau</u>	ıx sur éluat					
Antimo	oine (Sb)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sulfate COT Métau Antimo Arsenic Baryun	c (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
· L	m (Ba)	μg/l	16	10	+/- 10	Conforme à EN-ISO 17294-2

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Date 15.04.2020

N° Client 35004351

RAPPORT D'ANALYSES 933519 - 691284

Spécification des échantillons FG3

	Unité	Résultat	Limit d. Quant.	Incert. Résultat %	Méthode
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	2,7	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure (Hg)	μg/l	<0,03	0,03		NEN-EN 1483 (2007)
Molybdène (Mo)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. Le calcul de l' incertitude de mesure combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les détails concernant l'incertitude de mesure seront fournis sur demande.

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 06.04.2020 Fin des analyses: 14.04.2020

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

· Dognenet

les paramètres/résultats non accrédités sont signalés par le symbole « * ».

Seuls I

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

BURGEAP (LYON 69) Madame Aurore REFLOCH 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 15.04.2020 N° Client 35004351

accrédités sont signalés par le symbole « * ». **RAPPORT D'ANALYSES 933519 - 691285**

n° Cde 933519 Thizy-les-Bourgs - Sol - BC20-1663 - CDMCCE203823 - AURE

N° échant. 691285 Solide / Eluat

Projet 68509 Thizy-les-Bourgs K3+

Date de validation 06.04.2020 Prélèvement 02.04.2020 Prélèvement par: Client Spécification des échantillons FG4

	Unité	Résultat	Quant.	Résultat %	Méthode
Lixiviation					
Lixiviation (EN 12457-2)		۰			NF EN 12457-2
Prétraitement des échantillons					
Masse échantillon total inférieure à 2 kg	kg	° 0,62	0		
Prétraitement de l'échantillon		•			Conforme à NEN-EN 16179
Broyeur à mâchoires		•			méthode interne
Matière sèche	%	° 99,8	0,01	+/- 1	NEN-EN15934; EN12880
Calcul des Fractions solubles					
Antimoine cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05		selon norme lixiviation
Arsenic cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05		selon norme lixiviation
Baryum cumulé (var. L/S) *	mg/kg Ms	0 - 0,1	0,1		selon norme lixiviation
Cadmium cumulé (var. L/S) *	mg/kg Ms	0 - 0,001	0,001		selon norme lixiviation
Chlorures cumulé (var. L/S) *	mg/kg Ms	22	1		selon norme lixiviation
Chrome cumulé (var. L/S) *	mg/kg Ms	0 - 0,02	0,02		selon norme lixiviation
COT cumulé (var. L/S) *	mg/kg Ms	0 - 10	10		selon norme lixiviation
Cuivre cumulé (var. L/S) *	mg/kg Ms	0 - 0,02	0,02		selon norme lixiviation
Fluorures cumulé (var. L/S) *	mg/kg Ms	2,0	1		selon norme lixiviation
Fraction soluble cumulé (var. L/S) *	mg/kg Ms	0 - 1000	1000		selon norme lixiviation
Indice phénol cumulé (var. L/S) *	mg/kg Ms	0 - 0,1	0,1		selon norme lixiviation
Mercure cumulé (var. L/S) *	mg/kg Ms	0 - 0,0003	0,0003		selon norme lixiviation
Molybdène cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05		selon norme lixiviation
Nickel cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05		selon norme lixiviation
Plomb cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05		selon norme lixiviation
Sélénium cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05		selon norme lixiviation
Sulfates cumulé (var. L/S) *	mg/kg Ms	290	50		selon norme lixiviation
Zinc cumulé (var. L/S) *	mg/kg Ms	0 - 0,02	0,02		selon norme lixiviation

Analyses	Physico-chimiques	
AHAIVSES	FIIVSICO-CHIIIIIIdues	

Prélèvement par:	Clie				
Spécification des échantillons	FG4	ļ.			
Prelevement par: Spécification des échantillons Lixiviation Lixiviation (EN 12457-2) Prétraitement des échantillo Masse échantillon total inférieure à 2 kg Prétraitement de l'échantillon Broyeur à mâchoires Matière sèche	Unité	Résultat	Limit d. Quant.	Incert. Résultat %	Méthode
Lixiviation					
Lixiviation (EN 12457-2)		0			NF EN 12457-2
Prétraitement des échantille	ons				
Masse échantillon total inférieure à 2 kg	kg	° 0,62	2 0		
Prétraitement de l'échantillon	Ng	0,02	- 0		Conforme à NEN-EN 1617
Broyeur à mâchoires		0			méthode interne
Matière sèche	%	° 99,8	0,01	+/- 1	NEN-EN15934; EN1288
Calcul des Fractions solubl			0,0.		, , , , , , , , , , , , , , , , , , , ,
Antimoine cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05		selon norme lixiviation
Arsenic cumulé (var. L/S) *	mg/kg Ms	0 - 0,05			selon norme lixiviation
Baryum cumulé (var. L/S) *	mg/kg Ms	0 - 0,1			selon norme lixiviation
,	mg/kg Ms	0 - 0,001			selon norme lixiviation
Chlorures cumulé (var. L/S) *	mg/kg Ms	22	<u> </u>		selon norme lixiviation
Chrome cumulé (var. L/S) *	mg/kg Ms	0 - 0,02	+		selon norme lixiviation
COT cumulé (var. L/S) *	mg/kg Ms	0 - 10	+		selon norme lixiviation
Cuivre cumulé (var. L/S) *	mg/kg Ms	0 - 0.02			selon norme lixiviation
Fluorures cumulé (var. L/S) *	mg/kg Ms	2,0			selon norme lixiviation
Fraction soluble cumulé (var. L/S) *	mg/kg Ms	0 - 1000			selon norme lixiviation
Indice phénol cumulé (var. L/S) *	mg/kg Ms	0 - 0,1			selon norme lixiviation
Mercure cumulé (var. L/S) *	mg/kg Ms	0 - 0,0003			selon norme lixiviation
Molybdène cumulé (var. L/S) *	mg/kg Ms	0 - 0,05			selon norme lixiviation
Nickel cumulé (var. L/S) *	mg/kg Ms	0 - 0,05			selon norme lixiviation
Plomb cumulé (var. L/S) *	mg/kg Ms	0 - 0,05			selon norme lixiviation
Sélénium cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	· ·		selon norme lixiviation
Sulfates cumulé (var. L/S) *	mg/kg Ms	290			selon norme lixiviation
Zinc cumulé (var. L/S) *	mg/kg Ms	0 - 0,02	+		selon norme lixiviation
Analyses Physico-chimique	25	•			
Cadmium cumulé (var. L/S) * Chlorures cumulé (var. L/S) * Chrome cumulé (var. L/S) * COT cumulé (var. L/S) * Cuivre cumulé (var. L/S) * Fluorures cumulé (var. L/S) * Fraction soluble cumulé (var. L/S) * Indice phénol cumulé (var. L/S) * Mercure cumulé (var. L/S) * Molybdène cumulé (var. L/S) * Nickel cumulé (var. L/S) * Plomb cumulé (var. L/S) * Sélénium cumulé (var. L/S) * Selénium cumulé (var. L/S) * Zinc cumulé (var. L/S) * Zinc cumulé (var. L/S) * Analyses Physico-chimique pH-H2O COT Carbone Organique Total Prétraitement pour analyse Minéralisation à l'eau régale		° 8,8	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
COT Carbone Organique Total	mg/kg Ms	<1000	1000		conforme ISO 10694 (2008
Prétraitement pour analyse	s des métaux				
Minéralisation à l'eau régale		0			NF-EN 16174; NF EN 13657 (déchets)
Métaux					
					page 1 de
					page i de

Date 15.04.2020

N° Client 35004351

RAPPORT D'ANALYSES 933519 - 691285

opoomoation add donaritinonio	. •				
	Unité	Résultat	Limit d. Quant.	Incert. Résultat %	Méthode
Antimoine (Sb)	mg/kg Ms	<1,0 ^{pe)}	1		Conforme à EN-ISO 11885, EN 16174
Arsenic (As)	mg/kg Ms	4,6	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Baryum (Ba)	mg/kg Ms	10	1	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	0,3	0,1	+/- 21	Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	3,3	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	<0,4 ^{pe)}	0,4		Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Molybdène (Mo)	mg/kg Ms	<1,0 ^{pe)}	1		Conforme à EN-ISO 11885, EN 16174
Nickel (Ni)	mg/kg Ms	2,0	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	6,6	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Sélénium (Se)	mg/kg Ms	<2,0 ^{pe)}	2		Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	13	1	+/- 22	Conforme à EN-ISO 11885, EN 16174
Hydrocarbures Aromatiques	Polycycliques (ISO				
AL LAS	land on Alam NA	0.050	0.05		4 m m m la m t 2 OFN/TO 4 C4 O4

Hydrocarbures	A romatiques	Polycycliques	(180)
nvorocaroures	Aromatiques	Polycychiques	แอเม

5 7				
Naphtalène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Acénaphtène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Fluorène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Phénanthrène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Anthracène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Pyrène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Chrysène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.		équivalent à CEN/TS 16181
Somme HAP (VROM)	mg/kg Ms	n.d.		équivalent à CEN/TS 16181
HAP (EPA) - somme	mg/kg Ms	n.d.		équivalent à CEN/TS 16181
Somme HAP (VROM)	mg/kg Ms	n.d.		équivalent à CEN/TS 16181

Composés aromatiques

Benzène	mg/kg Ms	<0,050	0,05	Conforme à ISO 22155
Toluène	mg/kg Ms	<0,050	0,05	Conforme à ISO 22155
<i>Ethylbenzène</i>	mg/kg Ms	<0,050	0,05	Conforme à ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1	Conforme à ISO 22155
o-Xylène	mg/kg Ms	<0,050	0,05	Conforme à ISO 22155
Somme Xylènes	mg/kg Ms	n.d.		Conforme à ISO 22155
BTEX total *	mg/kg Ms	n.d.		Conforme à ISO 22155

COHV

	Unité	Résultat	Limit d. Quant.	Incert. Résultat %	Méthode
A 4: : (Ol-)				resultat 70	
Antimoine (Sb)	mg/kg Ms	<1,0 ^{pe)}	1		Conforme à EN-ISO 11885, 16174
Arsenic (As)	mg/kg Ms	4,6	1	+/- 15	Conforme à EN-ISO 11885, 16174
Baryum (Ba)	mg/kg Ms	10	1	+/- 12	Conforme à EN-ISO 11885,
Cadmium (Cd)	mg/kg Ms	0,3	0,1	+/- 21	16174 Conforme à EN-ISO 11885,
. ,					16174
Chrome (Cr)	mg/kg Ms	3,3	0,2	+/- 12	Conforme à EN-ISO 11885, 16174
Cuivre (Cu)	mg/kg Ms	<0,4 ^{pe)}	0,4		Conforme à EN-ISO 11885, 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et I
Molybdène (Mo)	mg/kg Ms	<1,0 ^{pe)}	1		16174 Conforme à EN-ISO 11885,
Nickel (Ni)	mg/kg Ms	2,0	0,5	+/- 11	16174 Conforme à EN-ISO 11885,
Plomb (Pb)	mg/kg Ms	6,6	0,5	+/- 11	16174 Conforme à EN-ISO 11885,
		-		7/- 11	16174
Sélénium (Se)	mg/kg Ms	<2,0 ^{pe)}	2		Conforme à EN-ISO 11885, 16174
Zinc (Zn)	mg/kg Ms	13	1	+/- 22	Conforme à EN-ISO 11885, 16174
Hydrocarbures Aromatiques	Polycycliques (IS	O)			
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Fluorène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Phénanthrène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Anthracène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Fluoranthène	mg/kg Ms	<0,050	0,05		éguivalent à CEN/TS 16
Pyrène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Chrysène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	0,00		équivalent à CEN/TS 16
	mg/kg Ms	n.d.			équivalent à CEN/TS 16
Somme HAP (VROM) HAP (EPA) - somme	mg/kg Ms	n.d.			équivalent à CEN/TS 16
Composés aromatiques	mg/kg Wi3	n.u.			equivalent a OEIV 10 10
Benzène	mg/kg Ms	<0,050	0,05		Conforme à ISO 221
Toluène	mg/kg Ms	<0,050	0,05		Conforme à ISO 221
Ethylbenzène	mg/kg Ms	<0,050	0,05		Conforme à ISO 221
	mg/kg Ms		0,05		Conforme à ISO 221
m,p-Xylène o-Xylène	mg/kg Ms	<0,10			Conforme à ISO 221
		<0,050	0,05		
Somme Xylènes BTEX total *	mg/kg Ms mg/kg Ms	n.d. n.d.			Conforme à ISO 221 Conforme à ISO 221
COHV	ggs				001110111110 0 100 221
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02		Conforme à ISO 221
Dichlorométhane	mg/kg Ms	<0,02	0,02		Conforme à ISO 221
Trichlorométhane	mg/kg Ms	<0,05	0,05		Conforme à ISO 221
Trichioromemane	I Marka Ivis	<0.05	บ.บอ		Conforme a 150 22

RvA L 005

Date 15.04.2020 N° Client 35004351

RAPPORT D'ANALYSES 933519 - 691285

Spécification of	les échantillons	FG4

Specification of	es échantillons	FG4				
Tétrachlorométh Trichloroéthylène		Unité	Résultat	Limit d. Quant.	Incert. Résultat %	Méthode
Tétrachlorométh		mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
Trichloroéthylène		mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
Tétrachloroéthyl		mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
Tétrachloroéthyl 1,1,1-Trichloroét	hane	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
1,1,2-Trichloroét		mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
1,1-Dichloroétha		mg/kg Ms	<0,10	0,1		Conforme à ISO 22155
1,2-Dichloroétha		mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
1,1,2-Trichloroétha 1,1-Dichloroétha 1,2-Dichloroétha cis-1,2-Dichloroéthy Trans-1,2-Dichlo Somme cis/trans-1, Hydrocarbure		mg/kg Ms	<0,025	0,025		Conforme à ISO 22155
1,1-Dichloroéthy		mg/kg Ms	<0,10	0,1		ISO 22155
Trans-1,2-Dichlo		mg/kg Ms	<0,025	0,025		Conforme à ISO 22155
Somme cis/trans-1,	2-Dichloroéthylènes	mg/kg Ms	n.d.			Conforme à ISO 22155
Hydrocarbure	s totaux (ISO)					
Hydrocarbures to		mg/kg Ms	<20,0	20		ISO 16703
Fraction C10-C1	2 *	mg/kg Ms	<4,0	4		ISO 16703
Fraction C12-C1	6 *	mg/kg Ms	<4,0	4		ISO 16703
Fraction C16-C2	0 *	mg/kg Ms	<2,0	2		ISO 16703
Fraction C20-C2	4 *	mg/kg Ms	<2,0	2		ISO 16703
Hydrocarbures to Fraction C10-C1 Fraction C12-C1 Fraction C16-C2 Fraction C20-C2 Fraction C24-C2 Fraction C28-C3 Fraction C32-C3 Fraction C36-C4 Polychlorobip Somme 6 PCB	8 *	mg/kg Ms	<2,0	2		ISO 16703
Fraction C28-C3	2 *	mg/kg Ms	<2,0	2		ISO 16703
Fraction C32-C3	6 *	mg/kg Ms	<2,0	2		ISO 16703
Fraction C36-C4	0 *	mg/kg Ms	<2,0	2		ISO 16703
Polychlorobip	hényles					
Somme 6 PCB		mg/kg Ms	n.d.			NEN-EN 16167
Somme 7 PCB	(Ballschmiter)	mg/kg Ms	n.d.			NEN-EN 16167
PCB (28)	,	mg/kg Ms	<0,001	0,001		NEN-EN 16167
		mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (52) PCB (101) PCB (118)		mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (118)		mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (138)		mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (153)		mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (180)		mg/kg Ms	<0,001	0,001		NEN-EN 16167
Analyses sur	éluat après lixivi	ation				
L/S cumulé		ml/g	10,0	0,1		selon norme lixiviation
Conductivité éle	ctrique	μS/cm	100	5	+/- 10	selon norme lixiviation
рН		p. 0, 0.11	9,2	0	+/- 5	selon norme lixiviation
Température		°C	21,1	0		selon norme lixiviation
•	sico-chimiques	sur éluat	,			
	oloo oliiiliiqaoo (mg/l	<100	100		Equivalent à NF EN ISO 1521
Résidu à sec Fluorures (F) Indice phénol		mg/l	0,2	0,1	+/- 10	Conforme à ISO 10359-1, confor à EN 16192
Indice phénol		mg/l	<0,010	0,01		NEN-EN 16192
Chlorures (CI)		mg/l	2,2	0,1	+/- 10	Conforme à ISO 15923-
Sulfates (SO4)		mg/l	29	5	+/- 10	Conforme à ISO 15923-
COT		mg/l	<1,0	1		conforme EN 16192
Métaux sur él	uat		7-1		· '	
Chlorures (CI) Sulfates (SO4) COT Métaux sur él Antimoine (Sb) Arsenic (As) Baryum (Ba)	uut	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)		μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)		μg/l	<10	10		Conforme à EN-ISO 17294-2

page 3 de 4 IESTING GIW **RvA** L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Date 15.04.2020

N° Client 35004351

RAPPORT D'ANALYSES 933519 - 691285

Spécification des échantillons FG4 paramètres/résultats non accrédités sont signalés par le symbole « * ».

	Unité	Résultat	Limit d. Quant.	Incert. Résultat %	Méthode
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Mercure (Hg)	μg/l	<0,03	0,03		NEN-EN 1483 (2007)
Molybdène (Mo)	μg/I	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	µg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

pe) La limite de quantification a été augmentée puisque l'influence perturbatrice de la matrice a nécessité un changement dans le ratio quantité d'échantillon/agent d'extraction

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.

Le calcul de l'incertitude de mesure combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l'expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UĬCPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d'élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les détails concernant l'incertitude de mesure seront fournis sur demande.

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Remarques

les

Seuls I

analyses BETX/COHV effectuées après broyage de l'échantillon

Début des analyses: 06.04.2020 Fin des analyses: 15.04.2020

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été recu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

Les paramètres indiqués dans ce document sont accrédités selon ISO/IEC 17025 Kamer van Koophandel Directeur ppa. Marc van Gelder Dr. Paul Wimmer Nr. 08110898 VAT/BTW-ID-Nr.: NL 811132559 B01

RvA L 005

page 4 de 4

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

BURGEAP (LYON 69) Madame Aurore REFLOCH 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 15.04.2020 N° Client 35004351

accrédités sont signalés par le symbole « * ». RAPPORT D'ANALYSES 933519 - 691286

n° Cde 933519 Thizy-les-Bourgs - Sol - BC20-1663 - CDMCCE203823 - AURE

N° échant. 691286 Solide / Eluat

Projet 68509 Thizy-les-Bourgs K3+

Date de validation 06.04.2020 Prélèvement 02.04.2020 Prélèvement par: Client Spécification des échantillons FG5

	Unité	Résultat	Quant.	Résultat %	Méthode
Lixiviation					
Lixiviation (EN 12457-2)		0			NF EN 12457-2
Prétraitement des échantillon	s				
Masse échantillon total inférieure à 2 kg	kg	° 0,57	0		
Prétraitement de l'échantillon		•			Conforme à NEN-EN 16179
Broyeur à mâchoires		0			méthode interne
Matière sèche	%	° 99,0	0,01	+/- 1	NEN-EN15934; EN12880
Calcul des Fractions solubles	3				
Antimoine cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05		selon norme lixiviation
Arsenic cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05		selon norme lixiviation
Baryum cumulé (var. L/S) *	mg/kg Ms	0 - 0,1	0,1		selon norme lixiviation
Cadmium cumulé (var. L/S) *	mg/kg Ms	0 - 0,001	0,001		selon norme lixiviation
Chlorures cumulé (var. L/S) *	mg/kg Ms	18	1		selon norme lixiviation
Chrome cumulé (var. L/S) *	mg/kg Ms	0,02	0,02		selon norme lixiviation
COT cumulé (var. L/S) *	mg/kg Ms	0 - 10	10		selon norme lixiviation
Cuivre cumulé (var. L/S) *	mg/kg Ms	0 - 0,02	0,02		selon norme lixiviation
Fluorures cumulé (var. L/S) *	mg/kg Ms	3,0	1		selon norme lixiviation
Fraction soluble cumulé (var. L/S) *	mg/kg Ms	0 - 1000	1000		selon norme lixiviation
Indice phénol cumulé (var. L/S) *	mg/kg Ms	0 - 0,1	0,1		selon norme lixiviation
Mercure cumulé (var. L/S) *	mg/kg Ms	0 - 0,0003	0,0003		selon norme lixiviation
Molybdène cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05		selon norme lixiviation
Nickel cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05		selon norme lixiviation
Plomb cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05		selon norme lixiviation
Sélénium cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05		selon norme lixiviation
Sulfates cumulé (var. L/S) *	mg/kg Ms	0 - 50	50		selon norme lixiviation
/					

Analyses	Physico-chimiques	
Anaivses	Physico-chimioues	

a D	Prélèvement par:	Cli	ent				
2	Spécification des échantillons	FG	5				
tats	,				Limit d.	Incert.	
Ins		Unité		Résultat		Résultat %	Méthode
paramètres/résultats non	Lixiviation						
ètre	Lixiviation (EN 12457-2)		0				NF EN 12457-2
am	Prétraitement des échantillons						
par	Masse échantillon total inférieure à 2 kg	kg	•	0,57	0		
les	Prétraitement de l'échantillon	l l	0	0,0.			Conforme à NEN-EN 16179
<u>s</u>	Broyeur à mâchoires		•				méthode interne
Seuls	Matière sèche	%	•	99.0	0,01	+/- 1	NEN-EN15934; EN12880
	Calcul des Fractions solubles	1			- , -		
:2005.	Antimoine cumulé (var. L/S) *	mg/kg Ms		0 - 0,05	0,05		selon norme lixiviation
25	Arsenic cumulé (var. L/S) *	mg/kg Ms		0 - 0,05	0,05		selon norme lixiviation
document sont accrédités selon ISO/IEC 17025	Baryum cumulé (var. L/S) *	mg/kg Ms		0 - 0,1	0,1		selon norme lixiviation
ွဲ	Cadmium cumulé (var. L/S) *	mg/kg Ms		0 - 0,001	0,001		selon norme lixiviation
븿	Chlorures cumulé (var. L/S) *	mg/kg Ms		18	1		selon norme lixiviation
<u>8</u>	Chrome cumulé (var. L/S) *	mg/kg Ms		0,02	0,02		selon norme lixiviation
G	COT cumulé (var. L/S) *	mg/kg Ms		0 - 10	10		selon norme lixiviation
sel	Cuivre cumulé (var. L/S) *	mg/kg Ms		0 - 0,02	0,02		selon norme lixiviation
és	Fluorures cumulé (var. L/S) *	mg/kg Ms		3,0	1		selon norme lixiviation
édit	Fraction soluble cumulé (var. L/S) *	mg/kg Ms		0 - 1000	1000		selon norme lixiviation
S	Indice phénol cumulé (var. L/S) *	mg/kg Ms		0 - 0,1	0,1		selon norme lixiviation
= a	Mercure cumulé (var. L/S) *	mg/kg Ms		0 - 0,0003	0,0003		selon norme lixiviation
Son	Molybdène cumulé (var. L/S) *	mg/kg Ms		0 - 0,05	0,05		selon norme lixiviation
Ę	Nickel cumulé (var. L/S) *	mg/kg Ms		0 - 0,05	0,05		selon norme lixiviation
me	Plomb cumulé (var. L/S) *	mg/kg Ms		0 - 0,05	0,05		selon norme lixiviation
ठ	Sélénium cumulé (var. L/S) *	mg/kg Ms		0 - 0,05	0,05		selon norme lixiviation
ŏ	Sulfates cumulé (var. L/S) *	mg/kg Ms		0 - 50	50		selon norme lixiviation
s Se	Zinc cumulé (var. L/S) *	mg/kg Ms		0 - 0,02	0,02		selon norme lixiviation
dan	Analyses Physico-chimiques						
nés (pH-H2O		0	10,7	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
pipi	COT Carbone Organique Total	mg/kg Ms		<1000	1000		conforme ISO 10694 (2008)
is E	Prétraitement pour analyses de	es métaux					
Les paramètres indiqués dans	Minéralisation à l'eau régale		0				NF-EN 16174; NF EN 13657 (déchets)
oarar	Métaux	<u> </u>					
Les							page 1 de 4

Your labs. Your service.

Date 15.04.2020 N° Client 35004351

RAPPORT D'ANALYSES 933519 - 691286

	Unité	Résultat	Limit d. Quant.	Incert. Résultat %	Méthode
Antimoine (Sb)	mg/kg Ms	2,3	0,5	+/- 10	Conforme à EN-ISO 11885, EN 16174
Arsenic (As)	mg/kg Ms	34	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Baryum (Ba)	mg/kg Ms	33	1	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	0,4	0,1	+/- 21	Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	7,4	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	8,4	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Molybdène (Mo)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
Nickel (Ni)	mg/kg Ms	13	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	22	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Sélénium (Se)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	78	1	+/- 22	Conforme à EN-ISO 11885, EN 16174

Hydrocarbures	A romatiques	Polycycliques	(180)
nvorocaroures	aromandues	Polycychiques	แอเม

Naphtalène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Acénaphtène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Fluorène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Phénanthrène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Anthracène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Pyrène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Chrysène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.		équivalent à CEN/TS 16181
Somme HAP (VROM)	mg/kg Ms	n.d.		équivalent à CEN/TS 16181
HAP (EPA) - somme	mg/kg Ms	n.d.		équivalent à CEN/TS 16181

Composés aromatiques

≃					
Ę	Benzène	mg/kg Ms	<0,050	0,05	Conforme à ISO 22155
ğ	Toluène	mg/kg Ms	<0,050	0,05	Conforme à ISO 22155
g	Ethylbenzène	mg/kg Ms	<0,050	0,05	Conforme à ISO 22155
S	m,p-Xylène	mg/kg Ms	<0,10	0,1	Conforme à ISO 22155
g	o-Xylène	mg/kg Ms	<0,050	0,05	Conforme à ISO 22155
es	Somme Xylènes	mg/kg Ms	n.d.		Conforme à ISO 22155
<u></u>	BTEX total *	mg/kg Ms	n.d.		Conforme à ISO 22155
_					

COHV

	Unité	Résultat	Quant.	Résultat %	Méthode
Antimoine (Sb)	mg/kg Ms	2,3	0,5	+/- 10	Conforme à EN-ISO 11885, I
					16174
Arsenic (As)	mg/kg Ms	34	1	+/- 15	Conforme à EN-ISO 11885, I 16174
Baryum (Ba)	mg/kg Ms	33	1	+/- 12	Conforme à EN-ISO 11885, I 16174
Cadmium (Cd)	mg/kg Ms	0,4	0,1	+/- 21	Conforme à EN-ISO 11885, 16174
Chrome (Cr)	mg/kg Ms	7,4	0,2	+/- 12	Conforme à EN-ISO 11885,
Cuivre (Cu)	mg/kg Ms	8,4	0,2	+/- 20	16174 Conforme à EN-ISO 11885,
Mercure (Hg)	mg/kg Ms	<0,05	0,05		16174 Conforme à ISO 16772 et E
Molybdène (Mo)	mg/kg Ms	<1,0	1		16174 Conforme à EN-ISO 11885,
<u> </u>		·		. / 44	16174 Conforme à EN-ISO 11885,
lickel (Ni)	mg/kg Ms	13	0,5	+/- 11	16174
Plomb (Pb)	mg/kg Ms	22	0,5	+/- 11	Conforme à EN-ISO 11885, 16174
Sélénium (Se)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, 16174
Zinc (Zn)	mg/kg Ms	78	1	+/- 22	Conforme à EN-ISO 11885, 16174
lydrocarbures Aromatiqu	ues Polycycliques (IS	(O)			10174
Vaphtalène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
-luorène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Phénanthrène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Anthracène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
-luoranthène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Pyrène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Chrysène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
ndéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	0,00		équivalent à CEN/TS 16
	mg/kg Ms	n.d.			équivalent à CEN/TS 16
Somme HAP (VROM) HAP (EPA) - somme	mg/kg Ms	n.d.			équivalent à CEN/TS 16
Composés aromatiques	mg/ng mo	ii.d.			oquivalent a OZIV 10 10
Benzène	mg/kg Ms	<0,050	0,05		Conforme à ISO 221
Toluène	mg/kg Ms	<0,050	0,05		Conforme à ISO 2215
Ethylbenzène	mg/kg Ms	<0,050	0,05		Conforme à ISO 2215
	mg/kg Ms		0,05		Conforme à ISO 2215
n,p-Xylène p-Xylène	mg/kg Ms	<0,10			Conforme à ISO 221
		<0,050	0,05		
Somme Xylènes BTEX total *	mg/kg Ms mg/kg Ms	n.d. n.d.			Conforme à ISO 2215 Conforme à ISO 2215
COHV	3 3 -				
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02		Conforme à ISO 221
Dichlorométhane	mg/kg Ms	<0,02	0,02		Conforme à ISO 2215
richlorométhane	mg/kg Ms	<0,05	0,05		Conforme à ISO 2215

IESTING F**IX RvA** L 005

Kamer van Koophandel Nr. 08110898 ppa. Marc VAT/BTW-ID-Nr.: NL 811132559 B01 Directeur ppa. Marc Dr. Paul V

Date 15.04.2020 N° Client 35004351

RAPPORT D'ANALYSES 933519 - 691286

Spécification des échaptillons FG5

Spécification des échantillons	FG5				
	Unité	Résultat	Limit d. Quant.	Incert. Résultat %	Méthode
Tétrachlorométhane	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1		Conforme à ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025		Conforme à ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1		ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025		Conforme à ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.			Conforme à ISO 22155
Hydrocarbures totaux (ISO)					
Hydrocarbures totaux C10-C40	mg/kg Ms	51,3	20	+/- 21	ISO 16703
Fraction C10-C12 *	mg/kg Ms	<4,0	4	.,	ISO 16703
Fraction C12-C16 *	mg/kg Ms	<4,0	4		ISO 16703
Fraction C16-C20 *	mg/kg Ms	3,3	2	+/- 21	ISO 16703
Fraction C20-C24 *	mg/kg Ms	13,0	2	+/- 21	ISO 16703
Fraction C24-C28 *	mg/kg Ms	18,0	2	+/- 21	ISO 16703
Fraction C28-C32 *	mg/kg Ms	11	2	1, =1	ISO 16703
Fraction C32-C36 *	mg/kg Ms	4,1	2	+/- 21	ISO 16703
Fraction C36-C40 *	mg/kg Ms	<2,0	2		ISO 16703
Polychlorobiphényles		, , ,			
Somme 6 PCB	mg/kg Ms	n.d.			NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.			NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
Analyses sur éluat après lixi			-,		
L/S cumulé	ml/g	10,0	0,1		selon norme lixiviation
Conductivité électrique	μS/cm	78,4	5	+/- 10	selon norme lixiviation
pH		10,3	0	+/- 5	selon norme lixiviation
Température	°C	21,6	0		selon norme lixiviation
Analyses Physico-chimiques	sur éluat				
Résidu à sec	mg/l	<100	100		Equivalent à NF EN ISO 1521
Fluorures (F)	mg/l	0,3	0,1	+/- 10	Conforme à ISO 10359-1, confor à EN 16192
Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192
Chlorures (CI)	mg/l	1,8	0,1	+/- 10	Conforme à ISO 15923-
Sulfates (SO4)	mg/l	<5,0	5		Conforme à ISO 15923-
COT	mg/l	<1,0	1		conforme EN 16192
Métaux sur éluat					
Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2
Baryum (Ba)	µg/l	<10	10		(2004) Conforme à EN-ISO 17294-2 (2004)

AL-West B.V.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Date 15.04.2020

N° Client 35004351

RAPPORT D'ANALYSES 933519 - 691286

Spécification des échantillons FG5

	Unité	Résultat	Limit d. Quant.	Incert. Résultat %	Méthode
Cadmium (Cd)	µg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	2,3	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Mercure (Hg)	μg/l	<0,03	0,03		NEN-EN 1483 (2007)
Molybdène (Mo)	μg/I	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	µg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. Le calcul de l'incertitude de mesure combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l'expression de l'incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d'élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance). Les détails concernant l'incertitude de mesure seront fournis sur demande.

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

les paramètres/résultats non accrédités sont signalés par le symbole « * ».

Seuls I

-es paramètres indiqués dans ce document sont accrédités selon ISO/IEC 17025 :2005.

analyses BETX/COHV effectuées après broyage de l'échantillon

Début des analyses: 06.04.2020 Fin des analyses: 15.04.2020

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

Dognenet

AL-West B.V.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

BURGEAP (LYON 69) Madame Aurore REFLOCH 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 15.04.2020 N° Client 35004351

accrédités sont signalés par le symbole « * ». **RAPPORT D'ANALYSES 933519 - 691287**

n° Cde 933519 Thizy-les-Bourgs - Sol - BC20-1663 - CDMCCE203823 - AURE

N° échant. 691287 Solide / Eluat

Projet 68509 Thizy-les-Bourgs K3+

Date de validation 06.04.2020 Prélèvement 02.04.2020 Prélèvement par: Client Spécification des échantillons FG6

	Unité	Résultat	Limit d. Quant.	Incert. Résultat %	Méthode
Lixiviation					
Lixiviation (EN 12457-2)		0			NF EN 12457-2
Prétraitement des échantillo	ns				
Masse échantillon total inférieure à 2 kg	kg	° 0,66	0		
Prétraitement de l'échantillon		0			Conforme à NEN-EN 16179
Broyeur à mâchoires		0			méthode interne
Matière sèche	%	° 99,6	0,01	+/- 1	NEN-EN15934; EN12880
Calcul des Fractions soluble	S				
Antimoine cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05		selon norme lixiviation
Arsenic cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05		selon norme lixiviation
Baryum cumulé (var. L/S) *	mg/kg Ms	0 - 0,1	0,1		selon norme lixiviation
Cadmium cumulé (var. L/S) *	mg/kg Ms	0 - 0,001	0,001		selon norme lixiviation
Chlorures cumulé (var. L/S) *	mg/kg Ms	22	1		selon norme lixiviation
Chrome cumulé (var. L/S) *	mg/kg Ms	0 - 0,02	0,02		selon norme lixiviation
COT cumulé (var. L/S) *	mg/kg Ms	14	10		selon norme lixiviation
Cuivre cumulé (var. L/S) *	mg/kg Ms	0,02	0,02		selon norme lixiviation
Fluorures cumulé (var. L/S) *	mg/kg Ms	2,0	1		selon norme lixiviation
Fraction soluble cumulé (var. L/S) *	mg/kg Ms	0 - 1000	1000		selon norme lixiviation
Indice phénol cumulé (var. L/S) *	mg/kg Ms	0 - 0,1	0,1		selon norme lixiviation
Mercure cumulé (var. L/S) *	mg/kg Ms	0 - 0,0003	0,0003		selon norme lixiviation
Molybdène cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05		selon norme lixiviation
Nickel cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05		selon norme lixiviation
Plomb cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05		selon norme lixiviation
Sélénium cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05		selon norme lixiviation
Sulfates cumulé (var. L/S) *	mg/kg Ms	110	50		selon norme lixiviation
Zinc cumulé (var. L/S) *	mg/kg Ms	0 - 0,02	0,02		selon norme lixiviation

n S	Prélèvement par:	Clien	t			
S I	Spécification des échantillons	FG6				
les paramètres/résultats non				Limit d.	Incert.	
ésu		Unité	Résultat	Quant.	Résultat %	Méthode
es/r	Lixiviation					
ètre	Lixiviation (EN 12457-2)		0			NF EN 12457-2
an	Prétraitement des échantillons	<u> </u>				·
par	Masse échantillon total inférieure à 2 kg	kg	° 0,66	0		
es	Prétraitement de l'échantillon	ing	0			Conforme à NEN-EN 16179
읔	Broyeur à mâchoires		0			méthode interne
Seuls	Matière sèche	%	° 99,6	0,01	+/- 1	NEN-EN15934; EN12880
	Calcul des Fractions solubles			-,-		
:2005.	Antimoine cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05		selon norme lixiviation
17025	Arsenic cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05		selon norme lixiviation
20	Baryum cumulé (var. L/S) *	mg/kg Ms	0 - 0,1	0,1		selon norme lixiviation
2	Cadmium cumulé (var. L/S) *	mg/kg Ms	0 - 0,001	0,001		selon norme lixiviation
븯	Chlorures cumulé (var. L/S) *	mg/kg Ms	22	1		selon norme lixiviation
S	Chrome cumulé (var. L/S) *	mg/kg Ms	0 - 0,02	0,02		selon norme lixiviation
'n	COT cumulé (var. L/S) *	mg/kg Ms	14	10		selon norme lixiviation
selc	Cuivre cumulé (var. L/S) *	mg/kg Ms	0,02	0,02		selon norme lixiviation
és :	Fluorures cumulé (var. L/S) *	mg/kg Ms	2,0	1		selon norme lixiviation
šdit	Fraction soluble cumulé (var. L/S) *	mg/kg Ms	0 - 1000	1000		selon norme lixiviation
SCE	Indice phénol cumulé (var. L/S) *	mg/kg Ms	0 - 0,1	0,1		selon norme lixiviation
t ac	Mercure cumulé (var. L/S) *	mg/kg Ms	0 - 0,0003	0,0003		selon norme lixiviation
ő	Molybdène cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05		selon norme lixiviation
Ħ	Nickel cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05		selon norme lixiviation
me	Plomb cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05		selon norme lixiviation
20	Sélénium cumulé (var. L/S) *	mg/kg Ms	0 - 0,05	0,05		selon norme lixiviation
ŏ	Sulfates cumulé (var. L/S) *	mg/kg Ms	110	50		selon norme lixiviation
ပိ	Zinc cumulé (var. L/S) *	mg/kg Ms	0 - 0,02	0,02		selon norme lixiviation
gan	Analyses Physico-chimiques					
Les paramètres indiqués dans ce document sont accrédités selon ISO/IEC	pH-H2O		° 9,5	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
gig	COT Carbone Organique Total	mg/kg Ms	1200	1000	+/- 16	conforme ISO 10694 (2008)
is in	Prétraitement pour analyses of	les métaux				
nètre	Minéralisation à l'eau régale		•			NF-EN 16174; NF EN 13657 (déchets)
arar	Métaux					
ģ						
Le						page 1 de 4

AL-West B.V.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

Date 15.04.2020 N° Client 35004351

RAPPORT D'ANALYSES 933519 - 691287

Spécification des échantillons FG6

			Limit d.	Incert.	
	Unité	Résultat	Quant.	Résultat %	Méthode
Antimoine (Sb)	mg/kg Ms	<1,0 ^{pe)}	1		Conforme à EN-ISO 11885, EN 16174
Arsenic (As)	mg/kg Ms	6,4	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Baryum (Ba)	mg/kg Ms	12	1	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	0,3	0,1	+/- 21	Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	5,2	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	2,7	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Molybdène (Mo)	mg/kg Ms	<2,0 ^{pe)}	2		Conforme à EN-ISO 11885, EN 16174
Nickel (Ni)	mg/kg Ms	3,5	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	7,4	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Sélénium (Se)	mg/kg Ms	<2,0 ^{pe)}	2		Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	21	1	+/- 22	Conforme à EN-ISO 11885, EN 16174

Hydrocarbures	A romatiques	Polycycliques	(180)
nvorocaroures	Aromatiques	Polycychiques	แอเม

<u> </u>	. , . ,	- 1 /		
Naphtalène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Acénaphtène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Fluorène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Phénanthrène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Anthracène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Pyrène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Chrysène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05	équivalent à CEN/TS 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.		équivalent à CEN/TS 16181
Somme HAP (VROM)	mg/kg Ms	n.d.		équivalent à CEN/TS 16181
HAP (EPA) - somme	mg/kg Ms	n.d.		équivalent à CEN/TS 16181
				·

Composés aromatiques

≃					
Ę	Benzène	mg/kg Ms	<0,050	0,05	Conforme à ISO 22155
ğ	Toluène	mg/kg Ms	<0,050	0,05	Conforme à ISO 22155
g	Ethylbenzène	mg/kg Ms	<0,050	0,05	Conforme à ISO 22155
S	m,p-Xylène	mg/kg Ms	<0,10	0,1	Conforme à ISO 22155
g	o-Xylène	mg/kg Ms	<0,050	0,05	Conforme à ISO 22155
es	Somme Xylènes	mg/kg Ms	n.d.		Conforme à ISO 22155
j j	BTEX total *	mg/kg Ms	n.d.		Conforme à ISO 22155
_					

COHV

	Unité	Résultat	Limit d. Quant.	Incert. Résultat %	Méthode
Antimoine (Sb)	mg/kg Ms	<1,0 ^{pe)}	1	Treesinar /e	Conforme à EN-ISO 11885,
		-			16174
Arsenic (As)	mg/kg Ms	6,4	1	+/- 15	Conforme à EN-ISO 11885, 16174
Baryum (Ba)	mg/kg Ms	12	1	+/- 12	Conforme à EN-ISO 11885,
Cadmium (Cd)	mg/kg Ms	0,3	0,1	+/- 21	16174 Conforme à EN-ISO 11885,
Chrome (Cr)	mg/kg Ms	5,2	0,2	+/- 12	16174 Conforme à EN-ISO 11885,
		·			16174 Conforme à EN-ISO 11885.
Cuivre (Cu)	mg/kg Ms	2,7	0,2	+/- 20	16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et E 16174
Molybdène (Mo)	mg/kg Ms	<2,0 ^{pe)}	2		Conforme à EN-ISO 11885, 16174
Nickel (Ni)	mg/kg Ms	3,5	0,5	+/- 11	Conforme à EN-ISO 11885,
Plomb (Pb)	mg/kg Ms	7,4	0,5	+/- 11	16174 Conforme à EN-ISO 11885,
Sélénium (Se)	mg/kg Ms	<2,0 ^{pe)}	2		16174 Conforme à EN-ISO 11885,
					16174
Zinc (Zn)	mg/kg Ms	21	1	+/- 22	Conforme à EN-ISO 11885, 16174
Hydrocarbures Aromatiques	Polycycliques (IS	0)			
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
-luorène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Phénanthrène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Anthracène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Fluoranthène	mg/kg Ms	<0,050	0,05		éguivalent à CEN/TS 16
Pyrène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Chrysène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
ndéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05		équivalent à CEN/TS 16
	mg/kg Ms		0,03		équivalent à CEN/TS 16
HAP (6 Borneff) - somme		n.d.			équivalent à CEN/TS 16
Somme HAP (VROM) HAP (EPA) - somme	mg/kg Ms	n.d.			
	mg/kg Ms	n.d.			équivalent à CEN/TS 16
Composés aromatiques Benzène	mg/kg Ms	<0,050	0,05		Conforma à ISO 221
	mg/kg Ms				Conforme à ISO 221
Toluène		<0,050	0,05		Conforme à ISO 221
Ethylbenzène	mg/kg Ms	<0,050	0,05		Conforme à ISO 221
n,p-Xylène	mg/kg Ms	<0,10	0,1		Conforme à ISO 221
o-Xylène	mg/kg Ms	<0,050	0,05		Conforme à ISO 221
Somme Xylènes	mg/kg Ms	n.d.			Conforme à ISO 221
BTEX total *	mg/kg Ms	n.d.			Conforme à ISO 221
COHV	ma/ka Ma	0.00	0.00		0
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02		Conforme à ISO 221
Dichlorométhane	mg/kg Ms	<0,05	0,05		Conforme à ISO 221
Frichlorométhane	mg/kg Ms	<0,05	0,05		Conforme à ISO 221

RvA L 005

AL-West B.V.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Date 15.04.2020 N° Client 35004351

RAPPORT D'ANALYSES 933519 - 691287

	Spécification des échantillons	FG6
·	Spécification des échantillons	FG0

Té		Unité	Résultat	Limit d. Quant.	Incert. Résultat %	NACCE I
Τέ			rtoounut	Quant.	Resultat 70	Méthode
	étrachlorométhane	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
	ichloroéthylène	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
	étrachloroéthylène	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
	1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
1,	1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
1,	1-Dichloroéthane	mg/kg Ms	<0,10	0,1		Conforme à ISO 22155
1, 1, 1, cis 1, Tr So	2-Dichloroéthane	mg/kg Ms	<0,05	0,05		Conforme à ISO 22155
ci:	s-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025		Conforme à ISO 22155
1,	1-Dichloroéthylène	mg/kg Ms	<0,10	0,1		ISO 22155
Tı	rans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025		Conforme à ISO 22155
So	omme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.			Conforme à ISO 22155
H	ydrocarbures totaux (ISO)					
H	ydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20		ISO 16703
Fr Fr Fr Fr Fr Fr Sc	action C10-C12 *	mg/kg Ms	<4,0	4		ISO 16703
Fr	action C12-C16 *	mg/kg Ms	<4,0	4		ISO 16703
Fr	action C16-C20 *	mg/kg Ms	2,2	2	+/- 21	ISO 16703
Fr	action C20-C24 *	mg/kg Ms	2,7	2	+/- 21	ISO 16703
Fr	action C24-C28 *	mg/kg Ms	3,1	2	+/- 21	ISO 16703
Fr	action C28-C32 *	mg/kg Ms	2,8	2		ISO 16703
Fr	action C32-C36 *	mg/kg Ms	2,4	2	+/- 21	ISO 16703
Fr	action C36-C40 *	mg/kg Ms	<2,0	2		ISO 16703
P	olychlorobiphényles					
S	omme 6 PCB	mg/kg Ms	0,0020 x)			NEN-EN 16167
So Po	omme 7 PCB (Ballschmiter)	mg/kg Ms	0,0020 x)			NEN-EN 16167
$P^{(}$	CB (28)	mg/kg Ms	0,002	0,001	+/- 27	NEN-EN 16167
P^{\prime}	CB (52)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
P^{\prime}	CB (101)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
P	CB (118)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PC P	CB (138)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
P^{\prime}	CB (153)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
$P^{(}$	CB (180)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
A	nalyses sur éluat après lixivi	ation				
L/	S cumulé	ml/g	10,0	0,1		selon norme lixiviation
Co	onductivité électrique	μS/cm	76,7	5	+/- 10	selon norme lixiviation
рŀ	1		9,4	0	+/- 5	selon norme lixiviation
Τe	empérature	°C	21,0	0		selon norme lixiviation
Α	nalyses Physico-chimiques	sur éluat				
R	ésidu à sec	mg/l	<100	100		Equivalent à NF EN ISO 15216
FI	uorures (F)	mg/l	0,2	0,1	+/- 10	Conforme à ISO 10359-1, confor à EN 16192
	dice phénol	mg/l	<0,010	0,01		NEN-EN 16192
CI	hlorures (CI)	mg/l	2,2	0,1	+/- 10	Conforme à ISO 15923-
Sı	ulfates (SO4)	mg/l	11	5	+/- 10	Conforme à ISO 15923-
C	OT	mg/l	1,4	1	+/- 10	conforme EN 16192
М	étaux sur éluat					
Ar	ntimoine (Sb)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
St Ct Ar Ar Ba	rsenic (As)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2
: ⊢	aryum (Ba)	µg/l	<10	10		(2004) Conforme à EN-ISO 17294-2 (2004)

AL-West B.V.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

15.04.2020 Date

N° Client 35004351

RAPPORT D'ANALYSES 933519 - 691287

Spécification des échantillons FG6 paramètres/résultats non accrédités sont signalés par le symbole « * ».

	Unité	Résultat	Limit d. Quant.	Incert. Résultat %	Méthode
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	2,1	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure (Hg)	μg/l	<0,03	0,03		NEN-EN 1483 (2007)
Molybdène (Mo)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

pe) La limite de quantification a été augmentée puisque l'influence perturbatrice de la matrice a nécessité un changement dans le ratio quantité d'échantillon/agent d'extraction

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. Le calcul de l'incertitude de mesure combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l'expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d'élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les détails concernant l'incertitude de mesure seront fournis sur demande.

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 06.04.2020 Fin des analyses: 14.04.2020

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

Dognenet

Seuls I

:2005.

Les paramètres indiqués dans ce document sont accrédités selon ISO/IEC 17025

AL-West B.V.

Φ

édités

non

es paramètres/résulta

Seuls

ISO/IEC

accrédités selon

ള

dans

indiqués

es

es paramètı

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Annexe de N° commande 933519

CONSERVATION, TEMPS DE CONSERVATION ET FLACONNAGE

Le délai de conservation des échantillons est expiré pour les analyses suivantes :

Conductivité 691282, 691283, 691284, 691285,

électrique 691286, 691287

Matière sèche 691282, 691283, 691285, 691286 par 1,1-Dichloroéthane 691282, 691283, 691284, 691285,

691286, 691287 Toluène 691282, 691283, 691284, 691285,

691286, 691287

sont signalés Fraction C24-C28 691282, 691283, 691285, 691286 1,1,1-Trichloroéthane 691282, 691283, 691284, 691285,

691286, 691287

Fraction C12-C16 691282, 691283, 691285, 691286 Fraction C36-C40 691282, 691283, 691285, 691286 Fraction C20-C24 691282, 691283, 691285, 691286 1,1,2-Trichloroéthane 691282, 691283, 691284, 691285,

691286, 691287

Fraction C28-C32 691282, 691283, 691285, 691286 Trichloroéthylène 691282, 691283, 691284, 691285,

691286, 691287

Benzène 691282, 691283, 691284, 691285,

691286, 691287

691282, 691283, 691284, 691285, pН

691286, 691287

Fraction C10-C12 691282, 691283, 691285, 691286 pH-H2O 691282, 691283, 691285, 691286

1,1-Dichloroéthylène 691282, 691283, 691284, 691285,

691286, 691287

Fraction C32-C36 691282, 691283, 691285, 691286

Trichlorométhane 691282, 691283, 691284, 691285,

691286, 691287

Somme Xylènes 691282, 691283, 691284, 691285,

691286, 691287

Chlorure de Vinyle 691282, 691283, 691284, 691285, 691286, 691287

Tétrachloroéthylène 691282, 691283, 691284, 691285,

691286, 691287

Fraction C16-C20 691282, 691283, 691285, 691286 Trans-1,2-691282, 691283, 691284, 691285,

Dichloroéthylène 691286, 691287

Hydrocarbures totaux 691282, 691283, 691285, 691286

C10-C40

cis-1,2-691282, 691283, 691284, 691285,

Dichloroéthène 691286, 691287

Tétrachlorométhane 691282, 691283, 691284, 691285, 691286, 691287

691282, 691283, 691284, 691285,

691286, 691287 o-Xylène 691282, 691283, 691284, 691285,

691286, 691287

Ethylbenzène 691282, 691283, 691284, 691285,

691286, 691287

m,p-Xylène 691282, 691283, 691284, 691285,

691286, 691287

Dichlorométhane

Directeur ppa. Marc van Gelder Dr. Paul Wimmer

AL-West B.V.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Somme cis/trans-1,2- 691282, 691283, 691284, 691285,

Dichloroéthylènes 691286, 691287

1,2-Dichloroéthane 691282, 691283, 691284, 691285,

691286, 691287

Annexe 3. Etude hydrogéologique de CPGF-Horizon de 2012

Cette annexe contient 33 pages.

INSTALLATIONS DE STOCKAGE DE DECHETS INERTES

ETUDE HYDROGEOLOGIQUE

Étude 12-081/69

Septembre 2012

SOMMAIRE

1 Préambule	3
2 Présentation du projet	6
3.1 Contexte géologique 3.2 Contexte hydrogéologique 3.2.1 Aquifères en présence 3.2.2 Points d'eau situé à proximité du site 3.2.3 Sens d'écoulement – Piézométrie au droit du site 3.2.4 Usage de la ressource 3.3 Contexte hydrologique 3.3.1 Le ruisseau La Trambouze 3.3.2 Cours d'eau non pérennes	9 11 11 13 14
4 Effets du projet sur les eaux souterraines	.15 .15
5 Mesures de sécurités	.17
6 Conclusions 6.1 Contexte hydrogéologique 6.2 Impacts de l'installation 6.2.1 Impacts quantitatifs 6.2.2 Impacts qualitatifs	.21 .22

FIGURES

Figure 1 : Situation géographique	5
Figure 2 : Contexte géologique	10
Figure 3 : Contexte hydrogéologique	12
Figure 4 : Suivi qualité des eaux souterraines	19

ANNEXES

A	4		-		
Annexe	1	•	Plan	parce	llaire

Annexe 2:	Plan	de r	bhasage	d	'exp	loitation
-----------	------	------	---------	---	------	-----------

Annexe 3 : Inventaire des points d'eau – Campagne piézométrique d'août 2012

Annexe 4:	Prescriptions	réglementaires	relatives	à	la	réalisation	ďun	forage	et	de
-----------	---------------	----------------	-----------	---	----	-------------	-----	--------	----	----

prélèvement d'eau en nappe

1

Préambule

A la demande de la société Granulats Matériaux Reins Trambouze Turdine (GMRT), filiale du Groupe EIFFAGE, CPGF-HORIZON Centre-Est a réalisé une étude hydrogéologique concernant l'Installation de Stockage de déchets non dangereux située sur le territoire de la commune de BOURG-DE-THIZY (69), au lieu-dit « le Four à Chaux » (figure 01, page 5).

La société GMRT est autorisée, par arrêté préfectoral en date du 23 octobre 2009, à exploiter un centre de traitement et de valorisation de matériaux inertes issus du BTP et une installation de stockage de déchets inertes (ISDI) dans une ancienne carrière à Bourg-de-Thizy. Cette ISDI était autorisée à accueillir des déchets inertes et de l'amiante lié (5 250 t/an au maximum).

Cependant, compte-tenu de l'évolution de la réglementation, elle ne peut plus accueillir cet amiante lié sur son site depuis le 1^{er} juillet 2012.

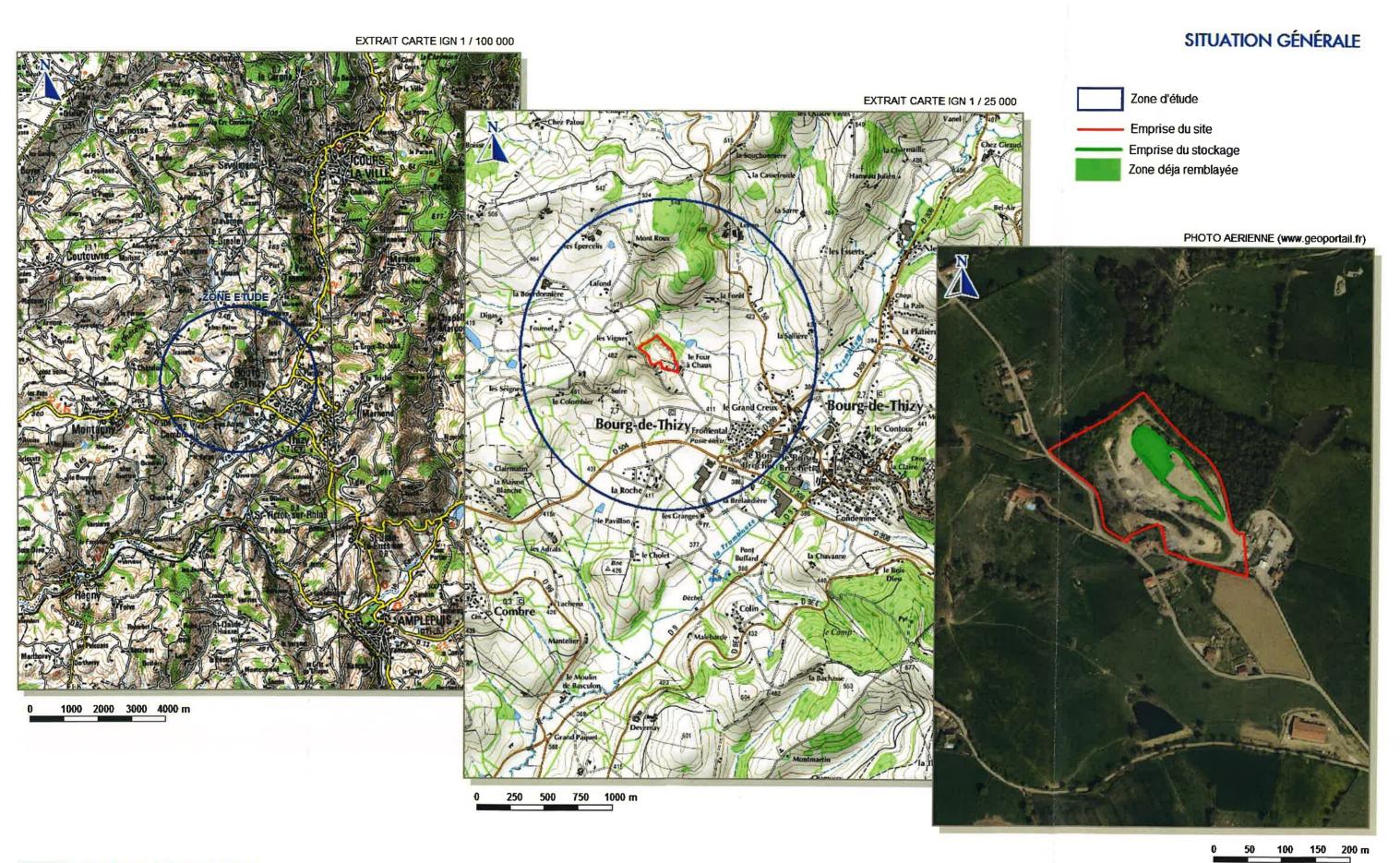
De nouvelles prescriptions réglementaires pour l'enfouissement des déchets d'amiante sont définies par l'arrêté ministériel du 12 mars 2012 :

- A partir du 1^{ier} juillet 2012, les déchets contenant de l'amiante lié ne seront plus acceptés dans les installations de stockage de déchets inertes (comme c'est le cas à BOURG DE THIZY).
- 2. Ces déchets ne pourront être acceptés que dans des <u>installations de stockage de déchets</u> <u>non dangereux</u> autorisées.

Toutefois, la société GMRT souhaite bénéficier de l'antériorité de l'installation de stockage (en application de l'article L 513-1 du Code de l'environnement) afin de continuer à accueillir de l'amiante. Pour cela, elle doit déposer un dossier répondant pour partie à l'arrêté du 9 septembre 1997 relatif aux centres de stockage de déchets non dangereux (cf. circulaire du 24 avril 2012 sur la conséquence de l'arrêt de la CJUE du 1^{ier} décembre 2011 sur le stockage des déchets d'amiante lié à des matériaux de construction inertes ayant conservé leur intégrité).

Ce dossier doit comporter notamment une note hydrogéologique indiquant le programme de mise en place de la surveillance de la qualité des eaux souterraines (conformément à l'article 40 de l'arrêté du 9 septembre 1997 modifié).

Le présent rapport constitue cette note hydrogéologique.



Cette étude hydrogéologique a pour objectif de préciser :

- √ l'hydrogéologie locale;
- ✓ l'impact potentiel du projet vis-à-vis des eaux souterraines du secteur (captage AEP) ;
- ✓ le réseau de surveillance des eaux souterraines à mettre en place ;
- ✓ les mesures potentielles pouvant limiter les incidences sur les eaux souterraines ;

Etude hydrogéologique

Présentation du projet

2.1 Situation du projet

L'installation de stockage de déchets non dangereux est localisée au lieu-dit « le Four à Chaux » sur la commune de Bourg-de-Thizy (69), sur le versant ouest du cours d'eau de la Trambouze.

Le site est situé à 500 m à l'ouest de la commune de Bourg-de-Thizy et s'étend sur une superficie de l'ordre 3,8 ha dont environ 0,6 ha concerne le stockage de déchets non dangereux (cf. figure 1, page 5).

Le site, de par l'autorisation de l'arrêté préfectoral du 23 octobre 2009, occupe la parcelle Al 103 du cadastre de Bourg-de-Thizy (cf. annexe 01).

La cote de fond fouille de la zone à remblayer est de 429 à 430 m NGF. Et la cote du terrain naturel au droit du projet (TN) est comprise entre 435 et 440 m NGF.

2.2 Description du projet

Le stockage d'amiante lié et de matériaux inertes se traduira par le remblaiement total du fond de fouille actuel du site jusqu'aux cotes du terrain naturel.

(a) Capacité de stockage et durée de l'activité

Les quantités maximales pouvant être admises chaque année sur le site de stockage de matériaux inertes sont limitées actuellement à 7 500 tonnes, dont 5 250 tonnes d'amiante lié à des matériaux inertes (3 100 m³).

Le volume total de matériaux autorisé sur le site est de 43 500 m³ dont 33 400 m³ d'amiante lié (soit 57 750 tonnes).

L'exploitation de l'installation de stockage de déchets inertes du BTP a été autorisée pour une durée de 11 ans.

Actuellement, il reste un volume d'environ 34 800 m³ à combler en 8 ans, dont 24 400 m³ par de l'amiante lié.

La société GMRT a constaté que le volume annuel de déchets d'amiante lié accueilli sur le site est plus faible que celui actuellement autorisé. La demande annuelle en stockage dans la région de Bourg-de-Thizy est plus faible que prévu, mais elle est réelle et constante.

C'est pourquoi, dans la demande d'antériorité, la société GMRT demande que soit réduit à 2 900 m³ le volume annuel de stockage autorisé sur son site, mais que la durée de l'autorisation soit augmentée à 15 ans.

Ainsi, le volume final stocké sur le site sera le même que prévu dans l'arrêté du 23 octobre 2009, mais le rythme d'apport de matériaux sera plus représentatif de la demande du marché.

En résumé, les caractéristiques du nouveau projet sont :

- ✓ Capacité de stockage : 43 500 m³;
- ✓ Flux moyen annuel : 2 900 m³ dont 2 225 m³ d'amiante lié
- (b) Origine des matériaux attendus

Les matériaux sont issus des chantiers de BTP du secteur et de la région.

(c) Nature des déchets

Les matériaux admis dans l'installation de stockage sont les suivants :

Description	Code	Restrictions					
17. DECHETS DE CONSTRUCTION ET DE DEMOLITION							
TERRES ET PIERRES (Y COMPRIS DEBLAIS)	17 05 04	A L'EXCLUSION DE LA TERRE VEGETALE ET DE LA TOURBE ; POUR LES TERRES ET PIERRES PROVENANT DE SITES CONTAMINES, UNIQUEMENT APRES REALISATION D'UNE PROCEDURE D'ACCEPTATION PREALABLE.					
MATERIAUX DE CONSTRUCTION CONTENANT DE L'AMIANTE	17 06 05	UNIQUEMENT LES DECHETS D'AMIANTE LIE AUX MATERIAUX INERTES (AMIANTE-CIMENT,) AYANT CONSERVE LEUR INTEGRITE.					
20. DECHETS MUNICIPAUX							
TERRES ET PIERRES	20 02 02	PROVENANT UNIQUEMENT DE DECHETS DE JARDINS ET DE PARCS ; A L'EXCLUSION DE LA TERRE VEGETALE ET DE LA TOURBE.					

(d) Fonctionnement de l'exploitation

La méthode d'exploitation se décomposera selon les étapes suivantes :

- ✓ Admission et contrôle des matériaux inertes via une procédure spécifique (cf. Dossier de demande d'autorisation) ;
- ✓ Exploitation du centre de stockage :

L'exploitation du nord vers le sud (cf. annexe 2) est menée de façon progressive, afin de permettre une remise en état coordonnée à l'avancée de l'exploitation.

Le phasage d'exploitation est le suivant :

✓ Etape 1 : Remplissage des alvéoles/casiers de 4 350 m³. Quand une alvéole est pleine, la suivante est remplie.

Les matériaux sont déversés et poussés par un bouteur de haut en bas sur l'alvéole en exploitation.

Le stockage sera réalisé sur une zone matérialisée par des bornes.

- ✓ Etape 2 : Nivellement et scarification des matériaux inertes
- ✓ Etape 3 : Remise en état de l'alvéole/du casier avec mise en place de terre végétale

(e) Remise en état du site

Le projet global d'aménagement des lieux prévu par la Société GMRT au terme de l'exploitation, est la création d'un espace écologique et agricole.

Le réaménagement futur prévoit :

- ✓ Le remblaiement du carreau du site sur une hauteur de 10 m
- ✓ Le régalage de la terre végétale et des matériaux du site ;
- ✓ La végétalisation par ensemencements et plantations d'espèces arbustives et arborées.

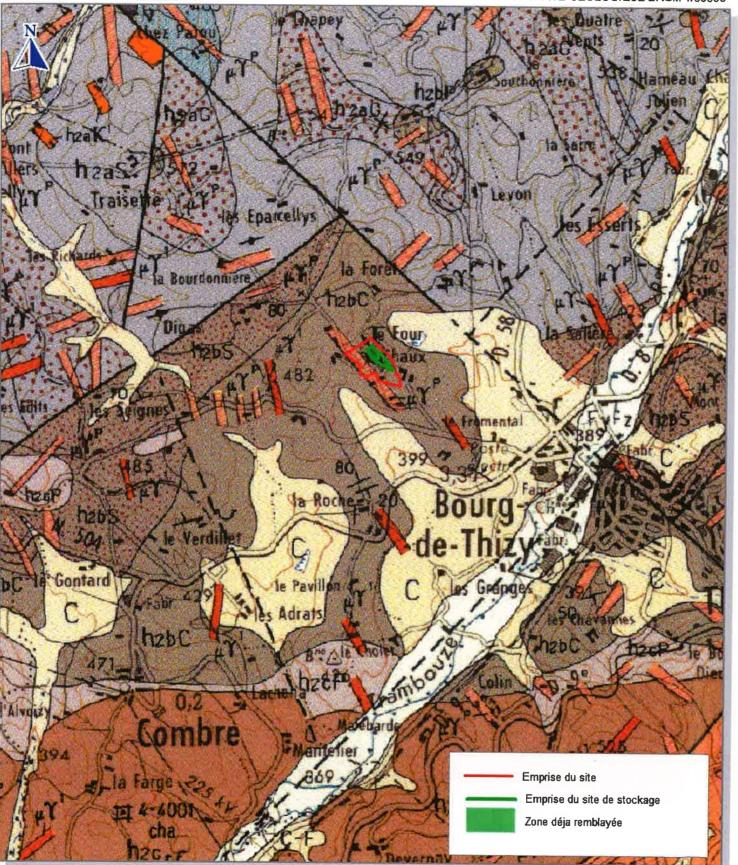
Les travaux de réaménagement se déroulent de façon simultanée et coordonnée à l'exploitation.

Contexte hydrogéologique

3.1 Contexte géologique

La zone d'étude se situe dans la partie méridionale des Monts du Beaujolais, en bordure nord-est du Massif Central. Le contexte géologique est particulièrement complexe dans cette région. Il est présenté sur la figure 02 (page 10), correspondant à un extrait de la carte géologique de Roanne au 1/50 000 ^{éme}.

Le territoire de la commune de Bourg-de-Thizy repose majoritairement sur les formations volcano sédimentaires dévoniennes et viséennes du Beaujolais. Outre ces formations, nous notons la présence, en pied de versant et dans la vallée de la Trambouze, de colluvions sablo-argileuses et d'alluvions.


Plus précisément, le site, situé sur les versants, est constitué par l'unité dite de Montagny, plus particulièrement par des formations à dominance schisto-calcaire (h2bC). Ces formations peuvent être altérées en surface.

Du point de vue structural, nous pouvons y observer des slumping et des plis synsédimentaires. De plus, dans un environnement proche, nous notons la présence de failles globalement orientées NW/SE et NE/SW. Il s'agit de failles normales verticales à rejet.

Etude hydrogéologique

EXTRAIT CARTE GEOLOGIQUE BRGM 1/50000

0 200 400 600 800 m

CONTEXTE GEOLOGIQUE

FORMATIONS SUP	ERFICIELLES QUATERNAIRE	PALEOZOIQI	JE	ELÉMENTS ST
la la c	Depots and implement - Annibid of debias modernes 2 - Soligel contracto (Barring)		Formatione carboniféres Pothas rikologies	Juliusia due cureni.
1 ?	Formations attuviales (sables et graviers)	No. of the last of	Sartingalyon	***
Fz	Allianons actuelles et subactue les	µT/	Microgranita (hi omer) (in croi alask te porotynque)	Pen Pen
Fy-7	Alusions actuelles et anciennes indifferenciess	-YP	Microgram to adoptivinous	2
Fy F Fx	Alleviers, minimum i liberapoli, Santas das crist es	0	give.	<i>₩</i>
Fw	exicultiellander: all metriques; F - Allurions and entres I dell'elementes	~ P	Formations du Visaan Série des tufs ambrecilères (Visaen supérieur)	
Rr	A usung reality of life	hoan	Metegrania parpaer que Bryelse de Villarass	₽
CF CF	A luvions remanices par collument ement CE our substitet reconsit	hecat	Layo de Frind	* \$\phi_{\text{fi}}\$
	-		E194 At 60° dis frantage sea Villarage	f AA
	Materials services on	тера	Lace de l'isable Leti-andesite quartzique	1. *
K K C-F C	Complexes colluviaux C - Collovic i unalic cablecies des bas versons et des fends de vallère.	hzelp	gnimbate: "To- "ment"	∓ +
	Coff Dollwichs et alloy ons indifferent easily. KinDomp cooff or marks de floanno. Kind substrat reconsilia.	terps	"list comprehence" - Lave by Loardon	2/
	Formations résiduelles a matériaux săliceux (cilox, chariles, quertz) RSI - Empatiere au actit-res at remediaments midilinaries	house	Tet commun	1
CHS CRS RSZ RS:	RSs - Parmotions allocationed loss (buildings plants in) DRs - Normalisers de versant dues d'un remandrements utationners de recognit numbbonné (CR) - qui a matter parcolaire.	hole	Conglomers 100 do commun 2016 de du Pant de Presie	* 1 ,5
CRe	Formations derivant des sadiments tertimires et du socie	losta	Serie de Montagny (Vraken (noyen) Volconismo (mohy andéssique	+ 8.5
Crg hyas	For habital's lesidualità et colluerd s'applie applieuses dictivant da l'Olignoche au ti caparità du soble li le na appe 2 de l'applieus de l'	hands	Volcan sme base tique	• 9x • 7.7 • F2,3
	4 - factés improue Formations dérivent des roches éruptives	heus	Ochistes et gres	RESSOURCES I
Ry Cy	Py-Arenes arginuses rés duelles Py-Arenes clép exércis et cultural non cluston	top.c	Cercare	руг
FORMATIONS TERMS	AIRES Of green entra or islessing	fize	Conglumbral	lish clin
gM O≈	Montes studies et se des a no libes ratraine. 1 - a l'invients		Série de la Gresia (Viséen oféricur)	\$
gvi	2 - euraffe, maile 3 - euraf e novertain Deg	hanKi	Kêra velly-u	25 25°
11111	Angley, angling smiller and equality instanceurs. - sold program - sold program - lowered one reale relies.	hzaK*	Species of valuations associates	(bar) 1 433)
7	Faciès des bardures 1 - Sables fe dapath ques, gelets et plocs	DraG	Crés el utanzil se ligra avantes ?)	d 2
2 3	Z poblec to depaid quesignancers 3 sables argiteux 4 sables of goodnes et politoriors du sables of goodnes et politoriors du sables.	heas	Schicks of green consisted methods in Consequences	 ∪1 <u>0</u> 2
			Socie métamorphique Série de la Chaveronderie	हरू ≡ (T)
FORMATIONS SE	CONDAIRES JURASSIQUES (sédiments littoraux)	PA P	Micaschistes quarrieux à chlimite, spidate et attimalé et schistes amphibol ques el épidote	
h 2	Gres infrahiss-quas, abuvens misroconglamètra quas et à dragees de quants		kusubayers-diènciir à na fé pilyré la Sabet	SITES ARCHÉ(

3.2 Contexte hydrogéologique

3.2.1 Aquifères en présence

Au droit du site, les formations schisto-calcaires peuvent être le siège d'aquifère. Ces formations sont par nature peu perméables. Seule l'altération et/ou la fracturation de ces formations pourront les rendre perméables et leur procurer une capacité de stockage d'eau et/ou favoriser des circulations préférentielles d'eaux souterraines.

Les formations d'altération qui se développent sur ces matériaux sédimentaires correspondent à des arènes. Selon la minéralogie et la texture initiale de la roche, les arènes peuvent être plus ou moins argileuses. Plus l'arène sera argileuse et à grains fins, plus sa perméabilité sera faible et donc plus sa capacité de stockage d'eau sera médiocre. L'arène est généralement plus argileuse dans les zones à pente faible. L'épaisseur de ces altérites est d'ordre métrique dans la région.

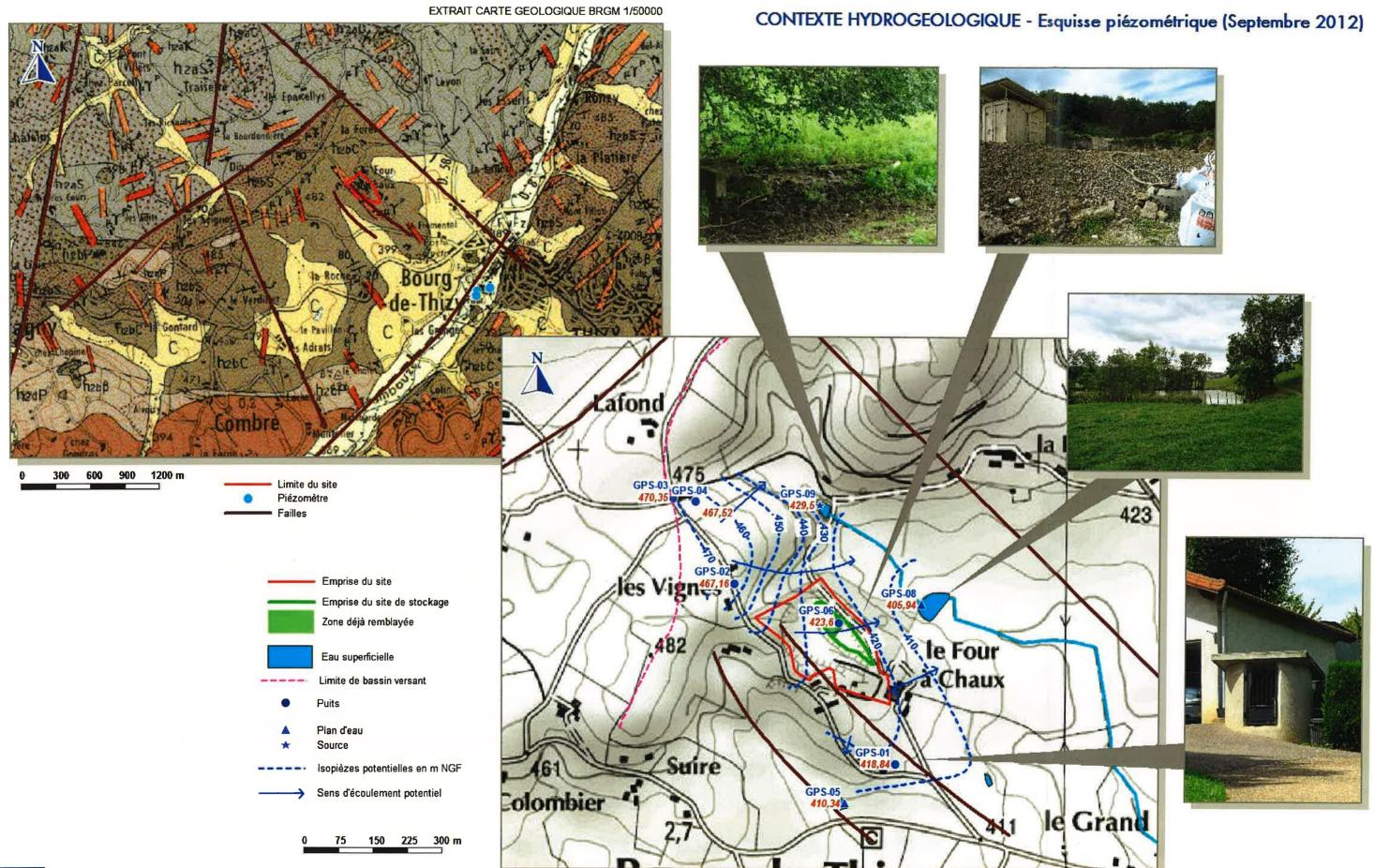
Dans les roches non altérées, l'eau ne peut circuler que dans les fissures ouvertes. Ces fissures sont essentiellement présentes près de la surface (entre 50 et 100 m de profondeur) et créent un milieu de perméabilité variable, selon leur degré de colmatage.

A proximité du site, les dépôts alluviaux et les colluviaux, en recouvrement et comblement dans la vallée de la Trambouze et en pied de versant, sont les principaux aquifères d'importance du secteur.

3.2.2 Points d'eau situé à proximité du site

Lors de notre visite sur le site (le 30 août 2012), nous avons recensé dans l'environnement proche du site, plusieurs puits de particuliers, une source, des plans d'eau artificiels ou non et le puits du site (cf. figure 03, page 12).

L'ouvrage du site fait environ 8 m de profondeur. Et le niveau piézométrique se trouve en moyennes eaux à environ 243,6 m NGF (6,45 m de profondeur).


Les puits de particuliers identifiés sont utilisés principalement pour des arrosages de jardins. Certains de ces puits collectent également les eaux de pluie. Les profondeurs de ces puits sont faibles, de l'ordre de 5 à 6 m. Ils semblent ainsi capter uniquement les eaux qui circulent dans les roches altérées.

D'après les informations collectées auprès des propriétaires, les niveaux d'eau dans ces ouvrages (hors pompage) varient très peu durant l'année.

Quant à la source reconnue, elle alimente un fil d'eau qui rejoint d'abord un étang, puis ensuite la Trambouze. Elle doit correspondre à une émergence des eaux circulant dans ces formations schisto-calcaires altérées.

Etude hydrogéologique

3.2.3 Sens d'écoulement - Piézométrie au droit du site

3.2.3.1 Ecoulements des eaux souterraines

Du fait de leur position sommitale, les formations schisto-calcaires aquifères du secteur (altérites, roches fissurées) ne peuvent qu'être alimentées par les précipitations qui tombent sur leur bassin versant.

Les eaux météoriques s'infiltrent jusqu'à atteindre la roche saine et circulent au droit des fissures ou des altérites jusqu'à être bloquées au contact du rocher sain ou d'un niveau argileux, qui constituent des murs pratiquement imperméables.

L'écoulement des eaux souterraines se fera au travers d'axes de cheminement préférentiel peu identifiables.

Toutefois, nous avons réalisé le 30 août 2012, un relevé piézométrique en moyennes eaux des points d'eau du secteur. Par l'intermédiaire de ce relevé et de la topographie du secteur, nous avons établi une esquisse piézométrique générale (cf. figure 03, page 12).

L'esquisse piézométrique en moyennes eaux nous montre :

- ✓ un écoulement des eaux souterraines qui suit la topographie du secteur, avec un gradient compris entre de 6 et 15 %;
- ✓ au niveau du site de stockage, un écoulement de direction ouest-est, en direction du cours d'eau non pérenne situé au lieu-dit « Four à Chaux »;
- ✓ un niveau d'eau compris entre les cotes 420 (en aval) et 425 m NGF (en amont) au droit du site de stockage ;
- ✓ une surface piézométrique comprise entre 4 et 10 m de profondeur en moyennes eaux ;
- ✓ que les cours d'eau constituent les exutoires des eaux souterraines du secteur.

La réalisation de 3 piézomètres, 1 en amont et 2 en aval du site, permettrait d'affiner précisément la piézométrie au droit du projet. Ils serviront également de points de suivi de la qualité de la nappe (cf. chapitre 5.2).

Remarque : Les points d'eau ont fait l'objet d'un nivellement au GPS 1200 LEICA (précision +/-10 centimètres).

3.2.3.2 Bassin d'alimentation/potentiel de la nappe

D'après la topographie, les terrains en présence, leur pendage, le bassin versant hydrogéologique du projet correspondrait au bassin versant hydrologique : le potentiel de « la nappe » correspond à la pluie efficace qui tombe sur le bassin hydrogéologique (son impluvium).

Le débit spécifique hydrogéologique moyen interannuel sur le secteur s'établit à environ 10 l/s/km².

Ainsi, au droit du projet, le débit souterrain est très faible, il n'excèderait pas 1 l/s, soit 3,6 m³/h.

La ressource en eaux souterraines au niveau du secteur d'étude est faible.

3.2.4 Usage de la ressource

Dans un rayon de 1 km autour du projet, nous n'avons recensé que des puits à usage domestique et de façon très sporadique (< 1 m³/j).

A noter que le site est situé hors de périmètres de protection et de zones d'alimentation de captages d'eau potable.

La ressource en eau du secteur (aquifère alluvial) est peu exploitée et ne constitue pas une ressource d'intérêt (absence de captage AEP...)

3.3 Contexte hydrologique

Dans le secteur d'étude considéré, le réseau hydrographique de surface est peu dense. Nous recensons uniquement :

- ✓ le cours d'eau la Trambouze, positionné à 1 km à l'est du site, avec un écoulement vers le sud-est :
- ✓ quelques cours d'eau non pérennes dans les talwegs qui encadrent le site.

3.3.1 Le ruisseau La Trambouze

(a) Généralités

Le régime hydrologique de la Trambouze est pluvial à crues automnales et hivernales et étiages estivaux.

Son débit spécifique d'étiage est de l'ordre 3,5 l/s/km².

(b) Relation avec l'aquifère fluviatile

La Trambouze **n'a aucune relation directe avec les aquifères situés au droit du projet.** Toutefois, elle constitue l'exutoire final des eaux de nappe du secteur via les cours de versant non pérennes, les lignes de sources.....

(c) Risque d'inondation

Le projet est situé hors de tout champ d'inondation.

3.3.2 Cours d'eau non pérennes

Les cours d'eau non pérennes situés au cœur des talwegs drainent pour partie les eaux contenues dans les altérites et/ou les roches fissurées

4

Effets du projet sur les eaux souterraines

Les effets du projet sur la ressource en eaux souterraines sont essentiellement de deux ordres :

✓ Effets temporaires:

Ce sont les effets liés à la phase d'exploitation (incidences hydrogéologiques).

✓ Effets permanents:

Ce sont les effets sur le site après les travaux d'aménagement (effets sur les écoulements souterrains).

L'ensemble des effets du projet sur son environnement a été évalué à partir de la nature du projet et de l'état initial réalisé dans les chapitres 2 et 3.

L'analyse des effets du projet sur les eaux souterraines a permis de déterminer les mesures nécessaires et le réaménagement adapté pour limiter et compenser toutes les incidences du projet (cf. chapitre 5).

4.1 Effets quantitatifs

4.1.1 Effet des travaux

L'activité se fait hors nappe. La cote de fond de fouille de l'ancienne carrière est à une hauteur minimale de 4 m vis-à-vis du niveau des eaux souterraines.

L'exploitation se faisant hors nappe et la piézométrie étant inchangée, l'écoulement des eaux souterraines n'est nullement modifié par le projet.

4.1.2 Effet du remblayage par des matériaux inertes

Les matériaux inertes ont généralement une perméabilité comprise entre 10⁻⁴ à 10⁻⁵ m/s. Ces valeurs seraient suffisantes pour assurer, au droit du projet, une recharge des aquifères identique à celle actuelle, en termes quantitatifs (aucune perte par ruissellement, évaporation).

D'après le retour d'expérience sur des sites qui sont remblayés par des matériaux inertes l'absence d'écoulement superficiel et de zone humide confirmerait la non-incidence du projet sur la recharge de la nappe.

Seul le temps de transfert vers la nappe sera plus long. Cet allongement du temps de transfert permettra une meilleure filtration des eaux d'infiltration et un temps de réaction plus important en cas d'une pollution de surface.

4.2 Effets qualitatifs

Durant l'exploitation, toutes les précautions sont prises pour éviter les pollutions accidentelles, et le projet n'aura d'incidence sur la qualité des eaux souterraines que dans le cas d'un événement accidentel lié aux engins. Dans tous les cas, les volumes éventuellement impliqués resteraient faibles (< 500 l : capacité maximale des réservoirs des engins de chantiers).

Les mesures spécifiques pour éviter tout accident seront évoquées au chapitre 5. Rappelons ici, qu'un déversement accidentel d'hydrocarbures peut être traité rapidement (modalités d'intervention présentées au chapitre 5) grâce à des kits anti-pollution présents dans les engins.

A noter, une pollution accidentelle au niveau du site n'aura aucun effet sur les captages AEP voisins du projet. Le site est situé hors des zones d'alimentation de captage AEP.

L'impact de cette pollution pourrait seulement être perçu au niveau de la qualité de l'eau du cours d'eau non pérenne situé à l'est du projet : drain final des eaux souterraines passant au droit du projet de stockage.

Aucun ouvrage ne semble être situé en aval du projet.

La réalisation de 3 piézomètres, 1 en amont et 2 en aval du site permettra d'affiner la piézométrie au droit du projet et d'affirmer la non-relation hydrogéologique du projet avec les puits du secteur.

Mesures de sécurités

5.1 Mesures préventives

Les mesures de prévention sont les suivantes :

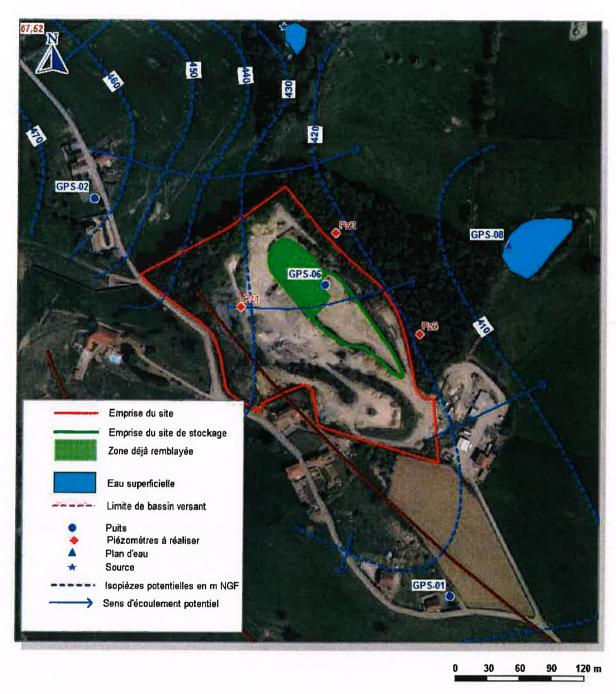
- ✓ Un contrôle régulier des engins de chantier, avec réparation immédiate de toute fuite éventuellement constatée;
- ✓ La réalisation des opérations d'entretien de réparation des engins est effectuée sur une plateforme de traitement bénéficiant des équipements réglementaires (aire étanche avec une grande capacité de rétention permettant la récupération et le traitement des débordements éventuels...);
- ✓ Le remplissage des réservoirs des engins est réalisé sur une aire étanche prévue à cet effet, équipée d'un caniveau et d'un point bas étanche de grande capacité de rétention ;
- ✓ La mise en place de dispositifs de rétention (bacs de rétention) au niveau des stocks d'hydrocarbures (huiles);
- ✓ La limitation des pollutions dues à des décharges sauvages, grâce à la fermeture des accès avec un dispositif de clôtures et de barrières, de manière à réglementer et/ou interdire l'accès à toute personne étrangère à la gravière;
- ✓ Formation du personnel au respect des consignes d'intervention et de protection contre une pollution;
- ✓ Le parcage des véhicules hors période de fonctionnement est préférablement organisé sur la plate-forme technique étanche;
- ✓ Les installations de valorisation de matériaux fonctionneront électriquement à partir d'un transformateur secondé par un groupe électrogène entreposé sur une cuvette de rétention de capacité suffisante.

5.2 Mesure de détection, de surveillance

Les mesures de surveillance sont les suivantes :

- ✓ Une surveillance des engins du site. Des inspections internes du site permettent une détection d'éventuelles pollutions des sols ;
- ✓ Mise en place d'un suivi quantitatif et qualitatif des eaux souterraines via la réalisation de 1 piézomètre en amont du projet (Pz1) et 2 en aval (Pz2 et Pz3).

Le suivi analytique sera semestriel et portera sur les paramètres listés dans l'annexe III de l'arrêté du 09/09/1997 relatif aux installations de stockage de déchets non dangereux modifié par l'arrêté du 12 mars 2012, soit MES, COT, DCO, DBO5, Azote global, phosphore total, phénols, métaux totaux, Cr6+, Cd, Pb, Hg, As, Fluor, CN, Hydrocarbures totaux, Composés organiques halogénés.


Le suivi quantitatif (suivi piézométrique) sera mensuel.

Les piézomètres seront positionnés en périphérie du projet. Ils seront réalisés selon les prescriptions réglementaires relatives à la réalisation d'un forage et de prélèvement d'eau en nappe (Annexe 04).

Afin de positionner au mieux ces piézomètres (au droit de zones failles ou fortement altérées) et définir leur profondeur, il serait préférablement de réaliser une prospection électrique.

Figure 4 : Suivi qualité des eaux souterraines

5.3 Mesures de protection

Malgré toutes ces précautions, si une panne ou un accident se produisait (en particulier une fuite d'hydrocarbures), un programme d'urgence serait immédiatement appliqué pour récupérer et éviter toute pollution prolongée dans la nature :

- ✓ Le décapage immédiat et l'évacuation des matériaux souillés, par un organisme habilité, vers une décharge agréée ou un centre de traitement spécialisé ;
- ✓ Si une pollution des eaux souterraines est constatée (peu probable), un pompage de dépollution par l'intermédiaire des piézomètres de surveillance sera réalisé. En fonction de la concentration en polluants, les eaux pompées seront traitées avant rejet. Cette opération sera effectuée par un organisme compétent ;
- ✓ L'injection, si nécessaire, de bactéries permettant l'épuration des eaux, par un organisme compétent.

Pour répondre de manière rapide et efficace en cas d'accident, une formation adéquate du personnel est recommandée, de manière à pouvoir appliquer les premières mesures nécessaires : traitement local de la pollution par mise en place de matières absorbantes ou mise en place de dispositifs de confinement.

Un kit antipollution est ainsi toujours disponible sur le site durant la phase d'activité de la carrière.

6

Conclusions

La société GMRT est autorisée, par arrêté préfectoral en date du 23 octobre 2009, à exploiter un centre de traitement et de valorisation de matériaux inertes issus du BTP et une installation de stockage de déchets inertes située sur la commune de Bourg-de-Thizy (69).

Dans le cadre de l'évolution de la réglementation, la société GMRT ne peut plus accueillir les déchets d'amiante lié sur son site depuis le 1^{er} juillet 2012. Toutefois, la société GMRT souhaite bénéficier de l'antériorité de l'installation de stockage (en application de l'article L 513-1 du Code de l'environnement) afin de continuer à accueillir de l'amiante. Pour cela, elle doit déposer un dossier comprenant une note hydrogéologique.

CPGF HORIZON Centre-Est a donc été sollicité pour réaliser cette note hydrogéologique. Cette étude a permis de préciser :

- √ l'hydrogéologie locale;
- √ l'impact potentiel du projet vis-à-vis des eaux souterraines du secteur (captage AEP);
- ✓ le réseau de surveillance des eaux souterraines à mettre en place ;
- ✓ les mesures potentielles pouvant limiter les incidences sur les eaux souterraines.

6.1 Contexte hydrogéologique

Le site de la société GMRT est situé au sein de formations schisto-calcaires. Ces formations sont le siège d'aquifères via leur l'altération et/ou leur fracturation.

Ces aquifères sont alimentés uniquement par les précipitations (pluies et neiges) du fait de leur position sommitale. L'eau météorique s'infiltre jusqu'à atteindre la roche saine ou le niveau imperméable des arènes où elle suivra des axes de cheminement préférentiel peu identifiables.

La réalisation d'une campagne piézométrique dans le secteur en août 2012, nous a permis d'estimer le sens d'écoulement général des eaux souterraines du secteur.

D'après les éléments actuels :

- ✓ les eaux souterraines s'écoulent en moyennes-basses eaux, au droit du projet de stockage, de l'ouest vers l'est avec un gradient de 6 à 10 %;
- ✓ le niveau piézométrique au niveau du projet (en moyennes-basses eaux) est compris entre les cotes 420 (en aval) et 425 m NGF (en amont) au droit du site de stockage.
- ✓ les cours d'eau constituent les exutoires des eaux souterraines du secteur.

La réalisation de 3 piézomètres, 1 en amont et 2 en aval du site, permettrait d'affiner précisément la piézométrie et le battement de nappe au droit du projet. Ils serviront également de points de suivi de la qualité de la nappe.

6.2 Impacts de l'installation

6.2.1 Impacts quantitatifs

L'exploitation se faisant hors nappe et aucun pompage n'étant réalisé sur le site, l'écoulement de la nappe n'est nullement modifié par le projet.

6.2.2 Impacts qualitatifs

Le seul risque de pollution de la nappe, en l'absence de mesures de prévention, est lié à un déversement accidentel d'hydrocarbures par les engins lors de l'exploitation ou une fuite d'une cuve d'hydrocarbures (ces produits, de faible densité, occasionneraient essentiellement une pollution de surface).

Toutefois, les mesures compensatoires citées dans le chapitre 5 permettront de limiter au maximum un éventuel impact qualitatif.

Le projet est situé en dehors de toute zone d'alimentation ou tout périmètre de protection de captage AEP(Alimentation en Eau Potable) et en amont direct d'aucun puits ou forages.

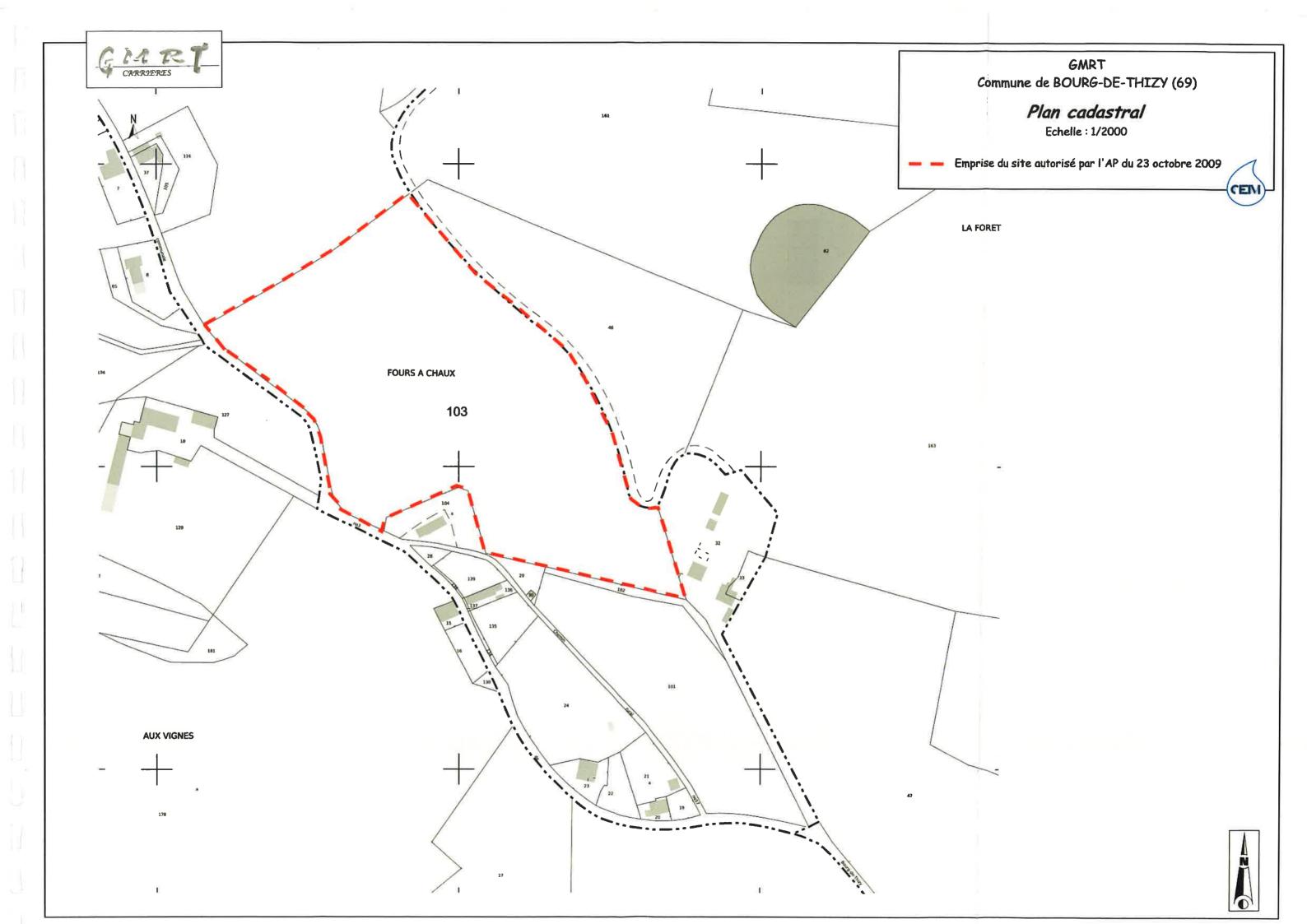
Par conséquent, l'impact du projet sur la qualité de l'eau du secteur, en cas de pollution accidentelle au niveau du site, est faible et pourra aisément être maîtrisé.

Commune de Bourg-De-Thizy

ANNEXE 1 PLAN PARCELLAIRE

Étude 12-081/69

Septembre 2012

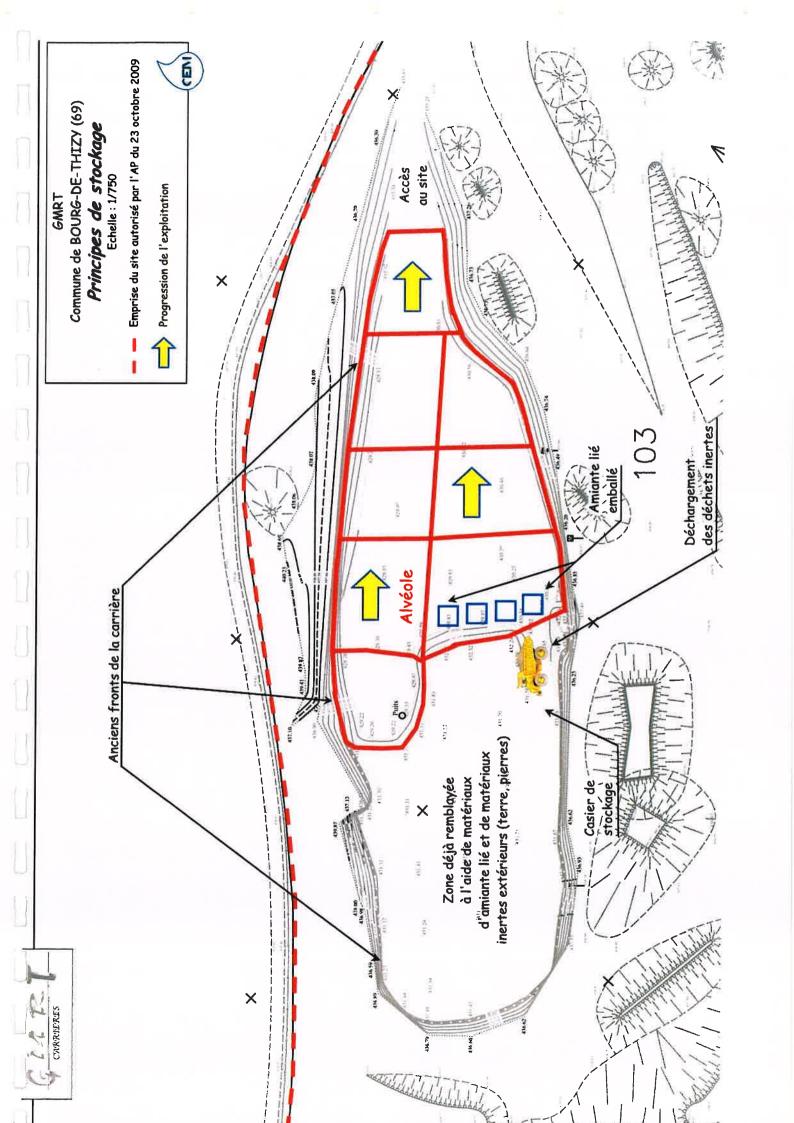


"Le Rivet" 5 allée du Levant - 38300 BOURGOIN-JALLIEU Tél : 04 74 18 32 47 - Fax : 04 74 18 32 58

www.cpgf-horizon-ce.com

ANNEXE 2

PLAN DE PHASAGE D'EXPLOITATION



Étude 12-081/69

Septembre 2012

Commune de Bourg-De-Thizy

ANNEXE 3

INVENTAIRE DES POINTS D'EAU – CAMPAGNE PIEZOMETRIQUE D'AOUT 2012

Étude 12-081/69

Septembre 2012

ISDI de Bourg-de-Thizy - ETUDE HYDROGEOLOGIQUE INVENTAIRE DES POINTS D'EAU – CAMPAGNE PIEZOMETRIQUE DU 30 août 2012

	Ouvrages			Localisation	ocalisation (Lambert 93)		Caracté	Caractéritiques des ouvrages	uvrages	Piézométrie di	Piezomětrie du 30 août 2012
Numero	Type	Nom	×Î	≻ (E)	Z repêre (m)	Commune	Repère	Prof.frep (m)	Cote du repère (m NGF)	Niveau piézométriquefrep.	Cote de la nappe (m NGF)
GPS0001	Puits	Puits 1	1799349,9	5205185,44	421,14	Bourg-de-Thizy	Fil d'eau	4,45	421,14	2,3	418,84
GPS0002	Puits	Puits 2	1798989,38	5205568,82	469,9	Bourg-de-Thizy	Fil d'eau	5,1	470,17	3,01	467,16
GPS0003	Puits	Puits 3	1798852,93	5205751,06	470,35	Bourg-de-Thizy	Tube	ĸ	470,35	0	470,35
GPS0004	Puits	Puits 4	1798901,71	5205744,56	470,47	Bourg-de-Thizy	Tube	6,15	470,57	3,05	467,52
GPS0005	Plan d'eau	Plan d'eau 1	1799241,28	5205098,26	410,34	Bourg-de-Thizy	Margelle	¥	410,34	0	410,34
GPS0006	Puits	Puits du projet	1799218,65	5205488,12	429,33	Bourg-de-Thizy	Tube	E	430,06	6,46	423,60
GPS0007	Plan d'eau	Mare	1799234,28	5205478,55	429,03	Bourg-de-Thizy	Fil d'eau	314	429,03	3.0	429,03
8000S45	Plan d'eau	Plan d'eau 2	1799399,02	5205529,78	405,94	Bourg-de-Thizy	Fil d'eau		405,94		405,94
GPS0009	Source	Source 1	1799181,31	5205781,63	429,5	Bourg-de-Thizy	Fil d'eau	ľ	429,5	1:	429,5
GPS0010	Riviere	Trambouze	1799978,48	5204256,7	377,9	Bourg-de-Thizy	Fil d'eau	2,6	377,9	2,5	375,4

G.M.R.T.

Commune de Bourg-De-Thizy

ANNEXE 4

PRESCRIPTIONS REGLEMENTAIRES RELATIVES A LA REALISATION D'UN FORAGE ET DE PRELEVEMENT D'EAU EN NAPPE

Étude 12-081/69

Septembre 2012

CPCIBI L'INGENIERIE QUALIFIÉE 08 06 1986

Dispositions techniques specifiques pour les forages

Conditions d'implantation des ouvrages et installations de prélèvement

- Art. 1 Le site d'implantation des ouvrages et installations de prélèvement est choisi en vue de prévenir toute surexploitation ou dégradation significative de la ressource en eau, superficielle ou souterraine, déjà affectée à la production d'eau destinée à la consommation humaine ou à d'autres usages dans le cadre d'activités régullèrement exploitées.
- Art. 2 Les forages ne peuvent être situés à proximité d'une installation ausceptible d'altérer la qualité des eaux souterraines.

En particulier, ils ne peuvent être situés à moins de ;

200 mètres des décharges et Installations de stockage de déchets menagers ou industriels ;

35 mètres des ouvrages d'assainlesement collectif ou non collectif, des canalisations d'eaux usées ou transportant des malières susceptibles d'allèrer la qualité des eaux souterraines ;

35 mètres des stockages d'hydrocarbures, de produits chimiques, de produits phytosanitaires ou autres produits susceptibles d'aitérer la qualité des eaux souternaines.

Les distances mentionnées ci-dessus peuvent être rédultes, sous réserve que les technologies utilisées ou les mesures de réalisation mises en ceuvre procurent un niveau équivalent de protection des eaux souterraines.

Art. 3 - Le site d'implantation des forages est choisi en vue de maîtriser l'évacuation des eaux de ruissellement et éviter toute accumulation de celles-ci dans un périmètre de 35 metres autour des têtes des forages.

Le soutènement, la stabilité et la sécurité des forages, l'isolation des différentes ressources d'éau, doivent être obligatoirement assurés au moyen de cuvelages, tubages, crépines, drains et autres équipements appropriés. Les caracléristiques des matériaux tubulaires (épaisseurs, résistance à la pression, à la corrosion) doivent être appropriées à l'ouvrage, aux milieux traversés et à la qualité des eaux souterraines afin de garantir de façon durable la qualité de l'ouvrage.

Toutes les dispositions doivent être prises par l'exploitant afin d'éviter les infiltrations d'eau depuis la surface.

Un même ouvrage ne paut en aucun cas permettre le prélèvement simultané dans plusieurs aquiféres distincts superposés.

Afin d'éviler tout mélange d'eau entre les différentes formations aquifères rencontrées, si le forage traverse plusieurs formations aquifères superposées, sa réalisation doit être accompagnée d'un aveuglement successif de chaque formation aquifère non exploitée par cuvelage et cimentation.

Les injections de boue de forage, le développement de l'ouvrage, par acidification ou tout autre procédé, les cimentations, obturations et autres opérations dans les forages doivent être effectués de façon à ne pas altèrer la structure géologique avoisinante et à préserver la qualité des eaux souterraines.

Le déclarant est tenu de signaler au préfet dans les meilleurs défais tout incident ou accident susceptible de porter atteinte à la qualité des eaux souterraines, la mise en évidence d'une politifien des eaux souterraines et des sols ainsi que les premières mesures prises pour y remédier.

Art. 4 - Il est réalisé une margelle bétonnée, conque de manière à étoigner les eaux de chactine des têtes des forages. Cette margelle est de 3 m² au minimum autour de chaque tête et 0,30 m de hauteur au-dessus du niveau du terrain naturel. Lorsque la tête de l'ouvrage débouche dans un locat ou une chambre de comptage, cette margelle n'est pas obligatoire : dans ce cas, le plafond du local ou de la chambre de comptage doit dépasser d'au moins 0,5 m le niveau du terrain naturel.

La lête des forages s'élève au moins 0,5 m au-dessus du terrain naturel ou du fond de la chambre de comptage dans lequel elle débouche. Cette hauteur minimale est ramenée à 0,2 m lorsque la tête débouche à l'intérieur d'un local. Elle est en outre cimentée sur 1 m de profondeur compté à partir du niveau du terrain naturel.

Un capot de fermeture ou tout autre dispositif approprié de fermeture équivalent est installé sur la téte des forages. Il doit permettre un parfait isolement du forage de toute pollution par les éaux superficielles. En dehors des périodes d'exploitation ou d'intérvention, l'accès à l'intérieur du forage est interdit par un dispositif de sécurité.

Les conditions de réalisation et d'équipement des forages dolvent permettre de relever le niveau statique de la nappe au minimum par sonde électrique.

SECTION 2

Conditions d'exploitation des ouvrages et installations de prélèvement

Art. 5 - Le pétitionnaire prend toutes les dispositions nécessaires, notamment par l'installation de bacs de rétention ou d'abris étanches, en vue de prévenir tout risque de pollution des eaux par les carburants et autres produits susceptibles d'altérer la qualité des eaux issues du système de pompage et notamment les fluides de fonctionnement du moteur thermique fournissant l'énergie nécessaire au pompage, s'il y a lieu.

Chaque installation de prélévement doit permettre le prélévement d'échantillons d'eau brute.

Le pétitionnaire surveille régulièrement les opérations de prélèvements par pompage. Il s'assure de l'entretien régulier des forages et ouvrages et installations de surface utilisés pour les prélèvements de manière à garantir la protection de la ressource en eau superficielle et souterraine.

Tout incident ou accident ayant porté ou susceptible de porter atteinte à la qualité des aaux ou à leur gestion quantitative et les premières mesures prises pour y remédier sont déclarés au prélet par le pétitionnaire dans les meilleurs délais.

Sans préjudice des mesures que peut prescrire le préfet, le pétitionnaire doit prendre ou faire prendre toutes mesures utiles pour mettre fin à la cause de l'incident ou l'accident portant atteinte au milieu aquatique, pour évaluer leurs consèquences et y remédier.

- Art. 6 La ou les valeurs du débit instantané et du volume annuel maximum prélevables et les périodes de prélèvement sont déterminées en tenant compte des intérêts mentionnés à l'article L, 211-2 du code de l'environnement. Elles doivent en particulier :
- permettre de prévenir toute surexploitation significative ou dégradation de la ressource déjà affectée
 à la production d'eau destinée à la consommation humaine ou à d'autres usages régulièrement exploités;
- ne pas entraîner un rabattement significatif de la happe où s'effectue le prélèvement pouvant provoquer une migration de polluants.

Celle ou ces valeurs du débit et du volume doivent par ailleurs être compatibles avec les dispositions du schéma directeur d'aménagement et de gestion des eaux et du ou des schémas d'aménagement et de gestion des eaux concernant la zone pu s'effectue le ou les prélèvements s'ils existent.

- Art: 7 Le préfet peut, sans que le pétitionnaire puisse s'y opposér ou solliciter une quelconque indemnité, réduire ou suspendre temporairement le prélèvement dans le cadre des mesures prises au titre l'article L. 211-3 du code de l'environnement relatif à la limitation ou à la suspension provisoire des usages de l'eau.
- Art. 8 Les ouvrages et installations de prélèvement d'eau doivent être conçus de façon à éviter le gaspillage d'eau. A ce titre, le pétitionnaire prend, si nécessaire, des dispositions pour limiter les pertes des ouvrages de dérivation, des réseaux et installations alimentés par le prélèvement dont il a la charge.

SECTION 3

Conditions de sulvi et surveillance des prélèvements

Art. 9 - Chaque ouvrage et installation de prélèvement est équipé de moyens de mosure ou d'évaluation appropriés du volume prélevé et d'un système permettant d'afficher en permanence ou pendant toute le période de prélèvement, pour les prélèvements salsonniers, les réfèrences de l'autorisation. Lotsque l'autorisation prévoit plusieurs points de prélèvements dans une même ressource au profit d'un même pétitionnaire et si ces prélèvements sont effectués au moyen d'une seule pompe ou convergent vers un rèseau unique, il peut être installé un seul dispositif de mesure après la pompe ou à l'entrée du réseau afin de mesurer le volume total prélevé.

Toute modification ou tout changement de type de moyen de mesure ou d'évaluation par un autre doit être préalablement porté à la connaissance du préfet. Celui-ci peut, après avis du conseil départemental de l'environnement et des risques sanitaires et technologiques, par arrêté motivé, demander la mise en place de moyens ou prescriptions complémentaires.

L'Installation de pompage doit être équipée d'un compteur volumétrique. Ce compteur volumétrique est choisi en tenent compte de la qualité de l'eau prélevée et des conditions d'exploitation de l'installation ou de l'ouvrage, notamment le débit moyen et maximum de prélèvement

et la pression du réseau à l'avai de l'installation de pompage. Le choix et les conditions de montage du compleur dolvent permetire de garantir la précision des volumes mesurés. Les compteurs volumétriques équipés d'un système de remise à zéro sont interdits. Un dispositif de mesure en continu des volumes autre que le compteur volumétrique peul être accepté des lors que le pétitionnaire démontre sur la base d'une tierce expertise que ce dispositif apporté les mêmes garanties qu'un compteur volumétrique en terme de représentativité, précision et stabilité de la mesure. Ce dispositif doit être infaisifiable et doit permettre de connaître également le volume cumulé du prélèvement.

- Art. 10 Les moyens de mesure et d'évaluation du volume prèlevé doivent être régulièrement entretenus, contrôlés et, si nécessaire, remplacés, de façon à fournir en permanence une information fiable.
- Art. 11 Le pétitionnaire consigne sur un registre ou cahier, les éléments du sulvi de l'exploitation de l'ouvrage ou de l'installation de prélèvement ci-après !
- lés volumes prélevés mensuellement et annuellement et le relevé de l'index du compteur volumétrique à la fin de chaque année civile ou de chaque campagne de prélévement dans le cas de prélèvement seisonnier;
- les incidents survenus au niveau de l'exploitation et, selon le cas, au niveau de la mesure des volumes prélevés ou du suivi des grandeurs caractéristiques ;
- les entrellens, contrôles et remplacements des moyens de mesure et d'évaluation:

Le prélet peut, par arrêté, fixer des modalités ou des dates d'enregistrement particulières ainsi qu'une augmentation de la fréquence d'enregistrement, pendant les périodes sensibles pour l'état des ressources en eau et des milieux aquatiques.

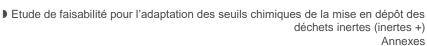
Ce registre est tenu à la disposition des agents du contrôle ; les données qu'il contient doivent être conservées 3 ans par le pétitionnaire.

SECTION 4

Conditions d'arrêt d'exploitation des ouvrages et installations de prélèvement

- Art. 12 Les forages sont régulièrement entretenus de manière à garantir la protection de la ressource en eau soulerraine, notamment vis-à-vis du risque de pollution par les eaux de surface et du mélange des eaux issues de différents systèmes aquifères, et à éviter tout gasplilage d'eau.
- Art. 13 En dehors des périodes d'exploitation et en cas de délaissement provisoire, les installations et ouvrages de prélèvement sont soigneusement fermés ou mis hors service afin d'éviter tout mélange ou pollution des eaux par la mise en communication des eaux de surface et notamment de ruissellement. Les carburants nécessaires au pompage et autres produits susceptibles d'altérer la qualité des eaux sont évacués du site ou confinés dans un local étanche.
- Art. 14 En cas de cessation définitive des prélèvements, le pétitionnaire en fait la déclaration auprès du préfet au plus tard dans le mois sulvant la décision de cessation définitive des prélèvements.

Dans ce cas, tous les carburants et autres produits susceptibles d'altérer la qualité des eaux, les pompes et leurs accessoires sont définitivement évacués du site de prélèvement.


Les travaux prévus pour la remise en état des lleux sont portés à la connaissance du préfet un mois avant leur démarrage. Ces travaux sont réalisés dans le respect des éléments mentionnés à l'article L. 211-1 du code de l'environnement et conformément aux articles 15 et 16 du présent arrêté.

Art. 15 - Est considéré comme abandonne le forage ;

- pour lequel le pétitionnaire ne souhaile pas faire les travaux de réhabilitation nécessaires, notamment à l'issue d'une inspection;
- le pétitionnaire ne souhaite pas poursulvre son exploitation;

Art. 16 - Tout forage abandonné est comblé par des techniques appropriées permettant de garantir l'absence de circulation d'eau entre les différentes nappes d'eau souterraine contenues dans les formations géologiques aquifères traversées et l'absence de transfert de pollution.

Le pélitionnaire communique au préfet dans les deux mois qui sulvent le comblement, un rapport de travaux précisant les références de l'ouvrage comblé, l'aquifère précédemment surveille ou exploité à partir de cet ouvrage, les travaux de comblement effectués, Cette formalité met fin aux obligations d'entretien et de surveillance de l'ouvrage.

Annexe 4. Qualité des eaux souterraines au droit du site entre 2014 et 2019 (Source : SOGRAP)

Cette annexe contient 3 pages.

								Piéz	o 1						
Paramètres	Seuils	Unité	juin-14	nov-14	juin-15	nov-15	juin-16	nov-16	avr-17	oct-17	juin-18	oct-18	sept-19	déc-19	Bruit de fond
рН	6.5 à 9*		6.9	6.8	7.3	7	7.1	7.1	7	7	7	7.3	7	7.1	7.05
Conductivité électrique	200 à 1100*	μS/cm	1054	1051	804	810	791	762	982	1221	860	1148	1226	1155	988.67
Potentiel REDOX		mV/EHM	418.5	491.7	440.7	398.6	437.9	431.6	427.6	396	180.5	502.5	183.9	521.8	402.61
DCO		mg/l	<15	<15	<10	<10	<10	<10	<10	<10	<10	<10	20	17	18.50
DBO5		mg/l	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
СОТ	2*/10**	mg/l	2.9	2.5	3.3	2.4	3.2	2.6	3.1	3.3	2.2	1.9	7.3	2.3	3.08
MES		mg/l	-	-	-	-	9	18	4	158	5	47	35	12	36.00
METAUX		<i>"</i>						1		l		l		1	
Baryum	0.7*	mg/l	<0.1	<0.1	<0.10	<0.1	<0.10	<0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Cadmium	5* 50*	μg/l /l	<2 <10	<2 <10	<2 <10	<2 <10	<2 <10	<2 <10	<2 <5	<2 <10	<2 <5	<2 <5	<2 <10	<2 <5	<2
Chrome Cuivre	2*	μg/l ma/l	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<5
Fer	200*	mg/l μg/l	<10	20.87	12.47	<10	74.19	109.4	-	<10	<10	10.94	<10	<10	<0.01 45.57
Molybdène	200	μg/I μg/I	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	45.5 <i>7</i> <50
Nickel	20*	μg/I	<10	<10	<10	<10	<10	<10	<5	<10	<5	<5	<10	<5	<5
Plomb	10*	μg/I	<10	<10	<10	<10	<10	<10	<5	<10	<5	<5	<10	<5	<5
Antimoine	5*	μg/l	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Zinc	5**	mg/l	<0.01	0.04	0.04	<0.001	0.02	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.028
Arsenic	10*	μg/l	<5	<5	<5	<5	<5	<5	<5	<5	0.26	<0.20	0.32	0.28	0.028
Mercure	1*	μg/I	<0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.20	<0.20	<0.20	<0.20	<0.05
Sélénium	10*	μg/I	<5	5.55	<5	<5	<5	<5	<5	8.2	2.35	6.64	1.38	1.09	4.202
Hydrocarbures totaux		, 3,													
Hydrocarbure totaux	1**	mg/l	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
НАР	L	<u> </u>													
Naphtalène		μg/l	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.005
Acénaphtylène		μg/l	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.016	<0.005	0.016
Acénaphtène		μg/l	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Fluorène		μg/l	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.007	<0.005	0.007
Phénanthrène		μg/l	<0.005	<0.005	0.016	0.005	0.005	<0.005	0.01	<0.005	<0.005	<0.005	0.014	0.007	0.010
Anthracène		μg/l	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.01	<0.005	<0.005	0.016	<0.005	0.013
Fluoranthène		μg/l	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.01	<0.005	<0.005	0.005	<0.005	0.008
Pyrène		μg/l	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.01	<0.005	<0.005	<0.005	<0.005	0.010
Benzo(a)anthracène		μg/l	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.01	<0.005	<0.005	<0.005	<0.005	0.010
Chrysène		μg/l	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.01	<0.005	<0.005	<0.005	<0.005	0.010
Benzo(b)fluoranthène		μg/l	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.01	<0.005	<0.005	0.006	<0.005	0.008
Benzo(k)fluoranthène		μg/l	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Benzo(a)pyrène	0.01*	μg/l	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.01	<0.005	<0.005	<0.005	<0.005	0.010
Dibenzo(a.h)anthracène		μg/l	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Benzo(ghi)pérylène		μg/l	<0.001	<0.001	<0.005	<0.005	<0.005	<0.005	<0.005	0.01	<0.005	<0.005	<0.005	<0.005	0.010
1-méthylnaphtalène		μg/l	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	-	-	-	-	-	-	<0.005
2-méthylnaphtalène		μg/l	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	-	-	-	-	-	-	<0.005
Indéno(1.2.3-cd)pyrène		μg/l	<0.001	<0.001	<0.005	<0.005	<0.005	<0.005	<0.005	0.01	<0.005	<0.005	<0.003	<0.005	0.010
(1) TOTAL des 4 HAP		μg/l	<0.012	<0.012	<0.020	<0.020	<0.020	<0.020	<0.02	0.02	<0.02	<0.02	<0.02	<0.02	0.020
(2) TOTAL des 6 HAP		μg/l	<0.022	<0.022	<0.030	<0.030	<0.030	<0.030	<0.03	0.04	<0.03	<0.03	<0.03	<0.03	0.040
PCB	<u> </u>	l ,						I		I		I			
PCB 28		μg/l	<0.001	<0.001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.001
PCB 52		μg/l	<0.001	<0.001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.001
PCB 101		μg/l	<0.001	<0.001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.011	<0.005	0.011
PCB 118		μg/l	<0.001	<0.001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.001
PCB 138 PCB 153		μg/l μg/l	<0.001	<0.001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.042	<0.005	0.042
PCB 180		μg/I μg/I	<0.001	<0.001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.031	<0.005	0.031
PCT 180		μ9/1	.0.001	-0.001	.0.003	.0.003	.0.003	.0.003	-0.003	-0.003	.0.003	-0.003	0.023	.0.003	0.023
Polychloroterphenyl		μg/l	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<1	<1	<1	<1	<1	<1	<0.3
Fibres d'amiante		1.31.													
Fibres d'amiante		μg/l	ND	ND	ND	ND	ND	ND	0	0	0	0	0	0	0.00
Autres paramètres	L														
Nitrates	50*	mg/l	-	-	-	-	-	-	-	31.7	7.3	22.1	1.5	<0.5	15.65
Nitrites	0.1*	mg/l	-	-	-	-	-	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Azote Kjedahl		mg/l	-	-	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ammonium	0.1*/4**	mg/l	-	-	-	-	-	-	-	<0.008	25	<0.01	0.02	<0.01	12.51
Sulfates	250*	mg/l	-	-	-	-	-	-	-	-	25	341	63	67	124.00
Chlorures	250*	mg/l	-	_	-	-	-	_		23	2	15	2	3	9.00
Orthophosphates		mg/l	-	-	-	-	-	-	_	<0.02	<0.02	<0.02	0.02	<0.02	0.020
Fluorures	1.5*	mg/l	-	-	_	-	-		_	_	ı	_	_	-	-
Calcium		mg/l	-	-	-	-	-	-	-	259	164	218	138	153.9	186.58
Potassium		mg/l	-	-	-	-	-	-	-	12.65	5.91	12.51	0.78	0.55	6.48
Magnésium		mg/l	-	-	-	-	-	-	-	10.2	4.67	7.76	4.01	4.23	6.17
	* Arrêté du 11,	/01/2007 re	elatif aux l	imites et i	référence.	s de auali	té des eau	ıx destiné	es à la co	nsomma	tion hum	aine			

^{*} Arrêté du 11/01/2007 relatif aux limites et références de qualité des eaux destinées à la consommation humaine

^{**} Arrêté du 11/01/2007 relatif aux limites et références de qualité des eaux brutes

								Piéz	o 2							
Paramètres	Seuils	Unité	juin-14	nov-14	juin-15	nov-15	juin-16	nov-16	avr-17	oct-17	juin-18	oct-18	sept-19	déc-19	avr-20	Bruit de fond
рН	6.5 à 9*		7	7	6.9	-	7	7.1	7.1	7.2	7	7.1	7.3	7.3	6.87	7.07
Conductivité électrique	200 à 1100*	μS/cm	1153	1195	1129	-	1176	764	1218	1256	1226	1155	852	903	1138	1097.08
Potentiel REDOX		mV/EHM	427.4	496.9	452.1	-	433.3	432.8	445.2	409	183.9	521.8	179.8	531.4	457	414.22
DCO		mg/l	<15	22	18	-	24	24	18	23	20	17	<10	<10	-	20.75
DBO5		mg/l	<3	<3	<3	-	<3	<3	<3	<3	<3	<3	<3	<3	-	<3
СОТ	2*/10**	mg/l	2.5	6.7	7.6	-	10	2.7	8.7	8.3	7.3	2.3	2.1	8.1	8	6.19
MES		mg/l	-	-	-	-	9	19	9	22	35	12	64	7	-	22.13
METAUX																
Baryum	0.7*	mg/l	<0.1	<0.1	<0.10	-	<0.10	<0.10	<0.1	<0.1	<0.1	<0.10	<0.1	<0.1	0.076	0.08
Cadmium	5*	μg/l	<2	<2	<2	-	<2	<2	<2	<2	<2	<2	<2	<2	< 0.2	<0.2
Chrome	50*	μg/l	<10	<10	<10	-	<10	<10	<5	<10	<5	<5	<10	<5	<4	<4
Cuivre	2*	mg/l	<0.01	<0.01	<0.01	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<4	<0.01
Fer	200*	μg/l	<10	<10	<10	-	72.2	94.64	-	<10	<10	<10	<10	<10	-	83.42
Molybdène		μg/l	<50	<50	<50	-	<50	<50	<50	<50	<50	<50	<50	<50	<10	<10
Nickel	20*	μg/l	<10	<10	<10	-	<10	<10	<5	<10	<5	<5	<10	<5	<10	<5
Plomb	10*	μg/l	<10	<10	<10	-	<10	<10	<5	<10	<5	<5	<10	<5	<10	<5
Antimoine	5*	μg/l	<50	<50	<50	-	<50	<50	<50	<50	<50	<50	<50	<50	<10	<10
Zinc	5**	mg/l	0.06	0.03	<0.01	-	0.04	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.0062	0.029
Arsenic	10*	μg/l	<5	<5	<5	-	<5	<5	<5	<5	0.86	1.03	1.07	1.63	<10	1.148
Mercure	1*	μg/l	<0.05	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.20	<0.20	<0.20	<0.20	<0.1	<0.05
Sélénium	10*	μg/l	<5	<5	<5	-	<5	<5	<5	<5	0.73	0.65	0.79	0.64	<15	0.703
Hydrocarbures totaux	ı		ı					ı			ı					
Hydrocarbure totaux	1**	mg/l	<0.05	<0.05	<0.05	-	<0.063	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
HAP	I		_	_	_	l l	_	_				_	_			
Naphtalène		μg/l	<0.005	<0.005	<0.005	-	<0.005	<0.005	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.01	<0.005
Acénaphtylène		μg/l	<0.005	0.03	<0.005	-	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.008	<0.005	<0.05	0.019
Acénaphtène		μg/l	<0.005	<0.005	<0.005	-	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Fluorène		μg/l	<0.005	0.017	<0.005	-	<0.005	<0.005	<0.005	<0.005	0.006	<0.005	0.01	0.006	<0.005	0.010
Phénanthrène		μg/l	<0.005	0.008	0.11	-	<0.005	<0.005	0.006	0.01	0.008	<0.005	0.024	0.012	<0.005	0.025
Anthracène		μg/l	<0.005	<0.005	0.006	-	0.015	<0.005	<0.005	0.01	0.006	<0.005	0.02	<0.005	<0.005	0.011
Fluoranthène		μg/l	<0.005	0.01	<0.005	-	<0.005	<0.005	<0.005	0.01	0.005	<0.005	0.005	<0.005	<0.005	0.008
Pyrène		μg/l	<0.005	0.006	<0.005	-	0.005	<0.005	0.005	0.01	0.005	<0.005	<0.005	<0.005	<0.005	0.006
Benzo(a)anthracène		μg/l	<0.005	<0.005	<0.005	-	<0.005	<0.005	<0.005	0.01	<0.005	<0.005	<0.005	<0.005	<0.005	0.010
Chrysène		μg/l	<0.005	<0.005	<0.005	-	<0.005	<0.005	<0.005	0.01	<0.005	<0.005	<0.005	<0.005	<0.005	0.010
Benzo(b)fluoranthène		μg/l	<0.005	<0.005	<0.005	-	<0.005	<0.005 <0.005	<0.005	0.01 < 0.005	<0.005 <0.005	<0.005	0.006 < 0.005	<0.005 <0.005	<0.005	0.008
Benzo(k)fluoranthène	0.01*	μg/l	<0.005 <0.005	<0.005	<0.005	-	<0.005	<0.005	<0.005	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Benzo(a)pyrène	0.01	μg/l	<0.005	<0.005	<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.010
Dibenzo(a.h)anthracène		μg/l	<0.005	<0.005	<0.005	-	<0.005	<0.005	<0.005	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Benzo(ghi)pérylène 1-méthylnaphtalène		μg/l	<0.001	<0.001	<0.005	-	<0.005	<0.005	<0.005	0.01	<0.005	<0.005	<0.005	<0.005	₹0.005	0.010
2-méthylnaphtalène		μg/l μg/l	<0.005	<0.005	<0.005		<0.005	<0.005	-	-	-	-	-	-	-	<0.005 <0.005
Indéno(1.2.3-cd)pyrène		μg/I	<0.003	<0.003	<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.003	<0.005	<0.005	
(1) TOTAL des 4 HAP		μg/I	<0.001	<0.001	<0.020		<0.003	<0.003	<0.003	<0.003	<0.003	<0.02	<0.003	<0.003	<0.003	<0.001
(2) TOTAL des 6 HAP		μg/I	<0.012	<0.012	<0.020		<0.020	<0.020	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	-	<0.012
PCB		μ 9 / 1	-0.022	-0.022	-0.030		-0.030	-0.030	.0.03	.0.03	.0.03	.0.03	10.03	.0.03		\U.UZZ
PCB 28		μg/l	<0.001	<0.001	<0.005	_	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.001
PCB 52		μg/I	<0.001	<0.001	<0.005	_	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.001
PCB 101		μg/l	<0.001	<0.001	<0.005	_	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.02	<0.005	<0.01	0.020
PCB 118		μg/l	<0.001	<0.001	<0.005	-	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.005	<0.005	<0.01	<0.001
PCB 138		μg/l	<0.001	<0.001	<0.005	_	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.073	<0.005	<0.01	0.073
PCB 153		μg/l	<0.001	<0.001	<0.005	-	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.055	<0.005	<0.01	0.055
PCB 180		μg/l	<0.001	<0.001	<0.005	-	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.05	<0.005	<0.01	0.050
PCT																
Polychloroterphenyl		μg/l	<0.3	<0.3	<0.3	-	<0.3	<0.3	<1	<1	<1	<1	<1	<1	-	<1
Fibres d'amiante																
Fibres d'amiante		μg/l	ND	ND	ND	-	ND	ND	0	0	0	0	0	0	-	0.00
Autres paramètres																
Nitrates	50*	mg/l	-	-	-	-	-	-	-	77.6	86.3	45.5	53.9	42.7	17	61.20
Nitrites	0.1*	mg/l	-	-	-	-	-	-	-	0.14	0.04	0.01	0.03	0.03	0.02	0.050
Azote Kjedahl		mg/l	-	-	-	-	-	-	-	<0.5	<0.5	<0.05	<0.5	0.9	-	0.900
Ammonium	0.1*/4**	mg/l		-	-	-	-		_	0.01	0.02	<0.01	0.01	0.04	<0.02	0.020
Sulfates	250*	mg/l	-	-	-	-	-	-	-	-	136	280	408	292	450	313.20
Chlorures	250*	mg/l	-	-	-	-	-	-	-	32	25	17	27	18	27	24.33
Orthophosphates		mg/l	-	-	-	-	-	-	-	0.05	0.1	0.07	0.06	0.16	-	0.088
Fluorures	1.5*	mg/l	-	-	-	-	-	-	-	-	-	-	-	-	0.17	0.170
Calcium		mg/l	-	-	-	-	-	-	-	262	223	228	249	220.8	-	236.56
Potassium		mg/l	-	-	-	-	-	-	-	4.7	5.09	6.36	6.2	7.99	-	6.068
Magnésium		mg/l	-	-	-	-	-	-	-	12.59	10.93	11.53	12.8	11.75	-	11.92
	* Arrêté du 11,	/01/2007 re	elatif aux l	imites et	référence.	s de quali	té des eau	ıx destiné	es à la co	nsomma	ation hum	aine				

^{*} Arrêté du 11/01/2007 relatif aux limites et références de qualité des eaux destinées à la consommation humaine

^{**} Arrêté du 11/01/2007 relatif aux limites et références de qualité des eaux brutes

- V.								Piéz	o 3							
Paramètres	Seuils	Unité	juin-14	nov-14	juin-15	nov-15	juin-16	nov-16	avr-17	oct-17	juin-18	oct-18	sept-19	déc-19	avr-20	Bruit de fond
рН	6.5 à 9*		7.2	7.1	7.2	7.7	7.5	7.4	7.2	7.2	7.3	7.3	7.1	7.4	7	7.28
Conductivité électrique	200 à 1100*	μS/cm	872	721	723	733	748	734	1039	782	852	903	871	771	722.6	805.51
Potentiel REDOX		mV/EHM	424.7	495.4	470.9	338.4	421.6	434.6	441.8	411	179.8	531.4	426	515.7	433	424.95
DCO		mg/l	<15	<15	<10	<10	<10	<10	142	<10	<10	<10	<10	<10	-	142.00
DBO5		mg/l	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	-	<3
СОТ	2*/10**	mg/l	1.5	1.8	2.7	2.4	3.6	2.8	2.4	2.7	2.1	8.1	1.8	3.7	2.7	2.95
MES		mg/l	-	-	-	-	9	4	59	47	64	7	4	<1	-	27.71
METAUX																
Baryum	0.7*	mg/l	<0.1	<0.1	<0.10	<0.1	<0.10	<0.10	<0.1	<0.1	<0.1	<0.10	<0.1	<0.1	0.042	0.04
Cadmium	5*	μg/l	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	< 0.2	< 0.2
Chrome	50*	μg/l	<10	<10	<10	<10	<10	<10	<5	<10	<5	<5	<10	<10	<4	<4
Cuivre	2*	mg/l	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<4	<0.01
Fer	200*	μg/l	<10	10.04	<10	<10	101.8	29.85	-	<10	<10	12.22	<10	<10	-	38.48
Molybdène		μg/l	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<10	<10
Nickel	20*	μg/l	<10	<10	<10	<10	<10	<10	<5	<10	<5	<5	<10	<5	<10	<5
Plomb	10*	μg/l	<10	<10	<10	<10	<10	<10	<5	<10	<5	<5	<10	<5	<10	<5
Antimoine	5*	μg/l	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<10	<10
Zinc	5**	mg/l	<0.01	0.06	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<4	0.035
Arsenic	10*	μg/l	<5	<5	<5	<5	<5	<5	<5	<5	0.64	0.44	0.67	0.67	<10	0.605
Mercure	1*	μg/l	<0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.20	<0.20	<0.20	<0.20	<0.1	<0.05
Sélénium	10*	μg/l	<5	<5	<5	<5	<5	<5	8.45	<5	2.8	3.19	1.02	1.96	<15	3.48
Hydrocarbures totaux	444		c0.05	c0.05	e0.05	-0.05	c0.05	-0.05	c0.05	c0.05	40.0F	40.05	-O OT	-0.05	c0.05	
Hydrocarbure totaux	1**	mg/l	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
HAP Nanhtalàna		/I	<0.005	0.006	<0.005	<0.005	<0.005	<0.005	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.01	0.000
Naphtalène		μg/l /l	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.01	0.006
Acénaphtylène Acénaphtène		μg/l	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Fluorène		μg/l μg/l	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.009	<0.005	<0.005	<0.005
Phénanthrène		μg/I μg/I	<0.005	0.003	0.003	0.006	0.003	<0.005	0.018	<0.005	<0.005	<0.005	0.009	0.007	<0.005	0.009
Anthracène		μg/I μg/I	<0.005	0.028	<0.005	<0.005	0.01	<0.005	<0.005	0.003	<0.005	<0.005	0.008	<0.005	<0.005	0.016
Fluoranthène		μg/I μg/I	<0.005	0.036	<0.005	<0.005	<0.005	<0.005	0.039	0.01	0.005	<0.005	0.005	<0.005	<0.005	0.009
Pyrène		μg/I	<0.005	0.03	<0.005	<0.005	0.009	<0.005	0.037	0.02	<0.005	<0.005	<0.005	<0.005	<0.005	0.019
Benzo(a)anthracène		μg/l	<0.005	0.02	<0.005	<0.005	<0.005	<0.005	0.023	0.01	<0.005	<0.005	<0.005	<0.005	<0.005	0.024
Chrysène		μg/l	<0.005	0.02	<0.005	<0.005	<0.005	<0.005	0.028	0.01	<0.005	<0.005	<0.005	<0.005	<0.005	0.019
Benzo(b)fluoranthène		μg/l	<0.005	0.03	<0.005	<0.005	<0.005	<0.005	0.054	0.01	0.006	<0.005	0.006	<0.005	<0.005	0.021
Benzo(k)fluoranthène		μg/l	<0.005	0.01	<0.005	<0.005	<0.005	<0.005	0.019	0.01	<0.005	<0.005	<0.005	<0.005	<0.005	0.013
Benzo(a)pyrène	0.01*	μg/l	<0.005	0.02	<0.005	<0.005	<0.005	<0.005	0.034	0.01	<0.005	<0.005	<0.005	<0.005	<0.005	0.021
Dibenzo(a.h)anthracène		μg/l	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.011	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.011
Benzo(ghi)pérylène		μg/l	<0.001	0.006	<0.005	<0.005	<0.005	<0.005	0.029	0.01	<0.005	<0.005	<0.005	<0.005	<0.005	0.015
1-méthylnaphtalène		μg/l	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	-	-	-	-	-	-	-	<0.005
2-méthylnaphtalène		μg/l	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	-	-	-	-	-	-	-	<0.005
Indéno(1.2.3-cd)pyrène		μg/l	<0.001	0.006	<0.005	<0.005	<0.005	<0.005	0.026	0.01	<0.003	<0.005	<0.003	<0.005	<0.005	0.014
(1) TOTAL des 4 HAP		μg/l	<0.012	0.052	<0.020	<0.020	<0.020	<0.020	0.13	0.04	<0.02	<0.02	<0.02	<0.02	-	0.074
(2) TOTAL des 6 HAP		μg/l	<0.022	0.108	<0.030	<0.030	<0.030	<0.030	0.2	0.07	<0.03	<0.03	<0.03	<0.03	-	0.126
РСВ																
PCB 28		μg/l	<0.001	<0.001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.001
PCB 52		μg/l	<0.001	<0.001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.001
PCB 101		μg/l	<0.001	<0.001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.016	<0.005	<0.01	0.016
PCB 118		μg/l	<0.001	<0.001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.001
PCB 138		μg/l	<0.001	<0.001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.06	<0.005	<0.01	0.060
PCB 153		μg/l	<0.001	<0.001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.046	<0.005	<0.01	0.046
PCB 180		μg/l	<0.001	<0.001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.042	<0.005	<0.01	0.042
PCT																
Polychloroterphenyl		μg/l	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<1	<1	<1	<1	<1	<1	-	<1
Fibres d'amiante		ı				ı		ı	ı							
Fibres d'amiante		μg/l	-	-	-	-	-	-	0	0	0	0	0	0	-	0.00
Autres paramètres																
Nitrates	50*	mg/l	-	-	-	-	-	-	-	20.9	5.3	23.7	22.8	22.7	5.9	19.08
Nitrites	0.1*	mg/l	-	-	-	-	-	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Azote Kjedahl		mg/l	-	-	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5
Ammonium	0.1*/4**	mg/l	-	-	-	-	-	-	-	0.02	0.02	-	<0.01	0.01	0.02	0.02
Sulfates	250*	mg/l	-	-	-	-	-	-	-	-	36	119	50	75	74	70.00
Chlorures	250*	mg/l	-	-	-	-	-	-	-	39	17	38	59	44	41	39.67
Orthophosphates		mg/l	-	-	-	-	-	-	-	0.05	0.03	0.04	0.07	0.07	-	0.05
Fluorures	1.5*	mg/l	-	-	-	-	-	-	-	-	-	-	-	-	0.19	0.190
Calcium		mg/l	-	-	-	-	-	-	-	151	133	158	130	128	-	140.00
Potassium		mg/l	-	-	-	-	-	-	-	3.61	2.79	4.15	5.6	3.31	-	3.89
Magnésium		mg/l	-	<u>-</u>	-	<u> </u>	-	<u> </u>		8.2	7.9	8.03	<10	6.2	-	7.58
	* Arrêté du 11,	/01/2007 re	elatif aux l	imites et	référence:	s de quali	té des eau	ıx destiné	es à la co	nsommo	tion hum	aine				

^{**} Arrêté du 11/01/2007 relatif aux limites et références de qualité des eaux brutes

Annexe 5. Fiches de prélèvement des eaux souterraines

Cette annexe contient 2 pages.

Etat de l'ouvrage : Bon

FICHE DE PRELEVEMENT DES EAUX SOUTERRAINES

Nom du site : N° Affaire : N° Contrat : Date Carrière Thizy les Bourgs A51738 CDMCCE203823 02/04/20

Nom ouvrage: PIEZO 2 Nom opérateur: JENM / AURE

Description générale de l'ouvrage

Indice national : / Coordonnées X : 799106.4 Syst. Projection :

Usage : Suivi des eaux de la carrière Y : 6550018.2 Lambert93

Nature de l'ouvrage : Piézomètre Nature précise du repère : Haut tube Hauteur du repère /r sol (m) : 0.77

Description technique de l'ouvrage

Equipement (PEHD / PVC /...): PVC
diamètre intérieur (mm): 112
profondeur mesurée (m/rep): 47
Hauteur ensablée en fond (cm): /
Profondeur du haut de la crépine de l'ouvrage (m): /
Base de la crépine de l'ouvrage (m): /

	Avant purge	Après prélèvement
Niveau d'eau (m/rep)	21.18	28.3
Epaisseur de flottant (cm)	/	0
Confirmation au préleveur (flottant)	oui / non	oui / non
Epaisseur de coulant (cm)	/	0

Z repère (m NGF): 440.28

Purge

Méthode de purge (barrer) : pompe / bailer / autre (préciser)

Profondeur de la pompe (m/rep) : 30

Référence de la pompe utilisée : PP36

Ouvrage précédent avec cette pompe+tuyau : Piézo 3

Rinçage du système de pompage : oui/non

Rejet des eaux de purge : Charbon actif + rejet

 T_0 de la purge (hh:mm) 14:23

Débit de la pompe (I/min) : 4

Durée de la purge (hh:min) : 00:23

Volume de purge (I) : 92

	Evolution des paramètre lors de la purge	Conductivité Redox corrigé - Eh	
ູ 1400 -		14	
jg 1200 -	-	12	
1000		10	
[∞]		8 _	
Conductivité (LS/cm) & redox corrigée (MN) (mV) & Redox corrigée (MN) & August (MN) &	A	6 4	
/Srl 400 -		4	
200 -		2	
) o -		0	
Š 14	:16 14:24 14:31	14:38 14:45 14:52	

Prélèvement

Méthode de prélèvement (barrer) : sortie de pomp	oe / -préleve	e ur / autre -		Filtration sur site ?	oui / non	
Profondeur de la pompe (m/rep) :	30	Concorvation	lu stabilisant →	Métaux/C0	DD/cations	Autres substances
Débit de la pompe (I/min) :	4	Conservation C	iu stavilisd∏t →	oui /	non	oui / non
	Purg	ge préalable au	ı prélèvement			
prélèvement après stabilisation (mais 3 états minimu	ım)	t1	t2	t3	t4	t5
Heure	(hh:mm)	14:25	14:35	14:46		
Niveau dynamique	(m/rep)	21.55	25.72	28.3		
Tompóraturo	(0C)	12.26	12.02	12 OF		

profession upres statementarion (male s state minimus		V=	\ <u>-</u>			
Heure	(hh:mm)	14:25	14:35	14:46		
Niveau dynamique	(m/rep)	21.55	25.72	28.3		
Température	(°C)	13.26	12.93	12.95		
Conductivité	(µS/Cm)	1193	1177	1138		
pH	(-)	6.4	6.85	6.87		
Oxygène dissous	(mg/l)	4.3	0	0.2		
Redox lu	(mV)	104.2	236.4	241.2		
Redox corrigé - Eh	(mV)	319	452	457	225	225
Irisations / Odeur	(-)	-/-	-/-	-/-		
Aspect / Couleur	(-)	léger trouble / -	léger trouble / -	-/-		
MES	(-)	quelques fines	quelques fines	-		
Epaisseur de flottant	(cm)	/	/	/	/	0
Epaisseur de coulant	(cm)	/	/	/	/	0

Flaconnage, conservation et transport Visualisation du point de prélèvement

Conditions météo : ensoleillé 13 °C Méthode de stockage :

N° d'identification de l'échantillon (étiquetage) :

PZ2
Glacière

Glacière

Nom du laboratoire :
AGROLAB

Date d'envoi au laboratoire :

Date d'envoi au laboratoire :

03/04/2020

← Caractéristiques d'accès

Vue de l'ouvrage ↓

Remarques : Malette SSP2

NB : cases grisées à ne pas remplir sur site

Si Doublon, no d'identification : /

Si Blanc de pompe, nº d'identification : /

FICHE DE PRELEVEMENT DES EAUX SOUTERRAINES

Nom du site : N° Affaire : N° Contrat : Date Carrière Thizy les Bourgs A51738 CDMCCE203823 02/04/20

Nom ouvrage: PIEZO 3 Nom opérateur: JENM / AURE

Description générale de l'ouvrage

Indice national : / Coordonnées X : 799070.98 Syst. Projection : Usage : Suivi des eaux de la carrière Y : 6549845.73 Lambert93

Etat de l'ouvrage : Bon Z repère (m NGF): 454.01

Nature de l'ouvrage : Piézomètre Nature précise du repère : Haut tube Hauteur du repère /r sol (m) : 0.705

Description technique de l'ouvrage

Equipement (PEHD / PVC /...):

diamètre intérieur (mm):

profondeur mesurée (m/rep):

Hauteur ensablée en fond (cm):

Profondeur du haut de la crépine de l'ouvrage (m):

Base de la crépine de l'ouvrage (m):

/

	Avant purge	Après prélèvement
Niveau d'eau (m/rep)	27.9	31.7
Epaisseur de flottant (cm)	/	0
Confirmation au préleveur (flottant)	oui / non	oui / non
Epaisseur de coulant (cm)	/	0

Purge

Méthode de purge (barrer) : pompe / bailer / autre (préciser)

Profondeur de la pompe (m/rep) : 32
Référence de la pompe utilisée : PP36
Ouvrage précédent avec cette pompe+tuyau : Rinçage du système de pompage : non

Rejet des eaux de purge : Charbon actif + rejet

 T_0 de la purge (hh:mm) 11:13 Débit de la pompe (l/min) : 2.4 Durée de la purge (hh:min) : 00:37 Volume de purge (l) : 88.8

	Evolution lors	des par de la pu		5		nductiv dox cor		Eh	
, 800 ·	1				· · ·		14		
Conductivité (LS/cm) & redox corrigé (mV) (mV) 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					-	•	12		
8 600 ·							10		
ੁੱ 500 -							8		
[∞] ∈ 400 ·						1		Н	
(m) 300		<u> </u>					6		
Sri 200							4		
₹ 100						-	2		
) pp 0		-	-	-	-		0		
Š 11	:09 11:16	11:24	11:31	11:38	11:45	11:5	52		

Prélèvement

	Pur	ge prealable au	ı prelevement			
prélèvement après stabilisation (mais 3 états minimu	ım)	t1	t2	t3	t4	t5
Heure	(hh:mm)	11:13	11:20	11:43	11:50	
Niveau dynamique	(m/rep)	27.9	29.2	31.01	31.7	
Température	(°C)	14.4	13.805	13.74	13.78	
Conductivité	(µS/Cm)	736	724.3	721.8	722.6	
рН	(-)	5.97	6.37	6.86	7.007	
Oxygène dissous	(mg/l)	4.4	3.8	3.9	3.9	
Redox lu	(mV)	154.7	169.2	196	217.9	
Redox corrigé - Eh	(mV)	369	384	411	433	225
Irisations / Odeur	(-)	-/-	-/-	-/-	-/-	
Aspect / Couleur	(-)	léger trouble / -	léger trouble / -	-/-	-/-	
MES	(-)	quelques fines	quelques fines	1	1	
Epaisseur de flottant	(cm)	1	/	1	1	0
Epaisseur de coulant	(cm)	/	/	/	/	0

Flaconnage, conservation et transport Visualisation du point de prélèvement

Conditions météo : ensoleillé 08 °C Méthode de stockage :

N° d'identification de l'échantillon (étiquetage) :

PZ3
Glacière

Glacière

Nom du laboratoire :

AGROLAB

Date d'envoi au laboratoire :

03/04/2020

Remarques : Malette SSP2

NB : cases grisées à ne pas remplir sur site

Si Doublon, no d'identification : /

Si Blanc de pompe, nº d'identification : /

← Caractéristiques d'accès

Vue de l'ouvrage ↓

Annexe 6. Bordereaux d'analyses de l'eau souterraine

Cette annexe contient 7 pages.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

BURGEAP (LYON 69) Madame Aurore REFLOCH 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX FRANCE

> Date 10.04.2020 N° Client 35004351

Information (s) commande n° 933517

Thizy-les-Bourgs - Eau souterraine - BC20-1663 - CDMCCE203823 - AURE

Madame, Monsieur

A réception, la température de l'enceinte de vos échantillons était supérieure à 8°C. Ceci peut affecter la fiabilité de certains résultats.

Respectueusement,

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

1. Magnenet

Les paramètres indiqués dans ce document sont accrédités selon ISO/IEC 17025 :2005. Seuls les paramètres/résultats non accrédités sont signalés par le symbole « * ».

page 1 de 1

accrédités sont

les paramètres/résultats non

-es paramètres indiqués dans ce document sont accrédités selon ISO/IEC 17025

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

BURGEAP (LYON 69) Madame Aurore REFLOCH 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 10.04.2020 N° Client 35004351

> > comme CONP)

signalés par le symbole « * ». **RAPPORT D'ANALYSES 933517 - 691278**

n° Cde 933517 Thizy-les-Bourgs - Eau souterraine - BC20-1663 -

CDMCCE203823 - AURE

N° échant. 691278 Eau

Projet 68509 Thizy-les-Bourgs K3+

Date de validation 06.04.2020 Prélèvement 02.04.2020 Prélèvement par: Client Spécification des échantillons PZ3

Unité Résultat Quant. Résultat % Méthode **Analyses Physico-chimiques** Fluorures (F) 0,19 0,02 +/- 10 Conforme à NEN 6578 mg/l Ammonium-N 0,02 0,02 +/- 15 Conforme à ISO 15923-1 mg/l Chlorures mg/l 41 1 +/- 10 Conforme à ISO 15923-1 Indice phénol μg/l <10 10 Conforme à EN-ISO 14402 Conforme à ISO 15923-1 Nitrates - N mg/l 5,9 0,05 +/- 10 Nitrites - N Conforme à ISO 15923-1 mg/l <0,01 0,01 Sulfates Conforme à ISO 15923-1 74 +/- 15 mg/l 1 Conforme à EN 1484 (déterminé 2,7 0,3 +/- 5 COT mg/l

Limit d.

1

Incert.

Prétraitement pour analyses des métaux Filtration métaux

Minéralisation à l'eau régale				EN ISO 15587-1
Métaux				
Antimoine (Sb) (eau superficielle)	µg/l	<10	10	Digestion conforme à NEN 6961, mesurage conforme à EN-ISO 17294-2(2004)
Arsenic (As) (eau superficielle)	μg/l	<10	10	Digestion conforme à NEN 6961, mesurage conforme à EN-ISO 17294-2(2004)
Baryum (Ba) (eau superficielle)	μg/l	42	20	Digestion conforme à NEN 6961, mesurage conforme à EN-ISO 17294-2(2004)
Cadmium (Cd) (eau superficielle)	μg/l	<0,20	0,2	Digestion conforme à NEN 6961, mesurage conforme à EN-ISO 17294-2(2004)
Chrome (Cr) (eau superficielle)	μg/l	<4,0	4	Digestion conforme à NEN 6961, mesurage conforme à EN-ISO 17294-2(2004)
Cuivre (Cu) (eau superficielle)	μg/l	<4,0	4	Digestion conforme à NEN 6961, mesurage conforme à EN-ISO 17294-2(2004)
Mercure (Hg) (eau superficielle)	μg/l	<0,1	0,1	Conforme NEN-EN 1483 (2007)
Molybdène (Mo) (eau superficielle)	μg/l	<10	10	Digestion conforme à NEN 6961, mesurage conforme à EN-ISO 17294-2(2004)
Nickel (Ni) (eau superficielle)	µg/l	<10	10	Digestion conforme à NEN 6961, mesurage conforme à EN-ISO

17294-2(2004)

AL-West B.V.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Date 10.04.2020

N° Client 35004351

RAPPORT D'ANALYSES 933517 - 691278

	Unité	Résultat	Limit d. Quant.	Incert. Résultat %	Méthode
Plomb (Pb) (eau superficielle)	μg/l	<10	10		Digestion conforme à NEN 69 mesurage conforme à EN-18 17294-2(2004)
Sélenium (Se) (eau superficielle) *	μg/l	<15	15		Digestion conforme à NEN 6961, mesurage conforme à EN-ISO 17294-2(2004)
Zinc (Zn) (eau superficielle)	μg/l	<4,0	4		Digestion conforme à NEN 69 mesurage conforme à EN-15 17294-2(2004)
lydrocarbures Aromatiques	Polycycliques	(ISO)			172012(2001)
Vaphtalène	µg/l	<0,010	0,01		EN ISO 17993 (F18
Acénaphtylène	μg/l	<0,050	0,05		méthode interne
Acénaphtène	μg/l	<0,0050	0,005		EN ISO 17993 (F18
Fluorène	μg/l	<0,0050	0,005		EN ISO 17993 (F18
Phénanthrène	μg/l	<0,0050	0,005		EN ISO 17993 (F18
Anthracène	μg/l	<0,0050	0,005		EN ISO 17993 (F18
-luoranthène	μg/l	<0,0050	0,005		EN ISO 17993 (F18
Pyrène	µg/l	<0,0050	0,005		EN ISO 17993 (F18
Benzo(a)anthracène	μg/l	<0,0050	0,005		EN ISO 17993 (F18
Chrysène	μg/l	<0,0050	0,005		EN ISO 17993 (F18
Benzo(b)fluoranthène	μg/l	<0,0050	0,005		EN ISO 17993 (F18
Benzo(k)fluoranthène		<0,0050	0,005		EN ISO 17993 (F18
	µg/l	<0,0050	0,005		EN ISO 17993 (F18
Benzo(a)pyrène Dibenzo(ah)anthracène	µg/l				EN ISO 17993 (F18
· /	µg/l	<0,0050	0,005		
Benzo(g,h,i)pérylène	µg/l	<0,0050	0,005		EN ISO 17993 (F18
ndéno(1,2,3-cd)pyrène	µg/l	<0,0050	0,005		EN ISO 17993 (F18
Somme HAP (16 EPA)	μg/l	n.d.			EN ISO 17993 (F18
Composés aromatiques					0 () 50,100,444
Benzène	μg/l	<0,2	0,2		Conforme à EN-ISO 114
Toluène	μg/l	<0,5	0,5		Conforme à EN-ISO 114
Ethylbenzène	μg/l	<0,5	0,5		Conforme à EN-ISO 1142
n,p-Xylène	μg/l	<0,2	0,2		Conforme à EN-ISO 1142
p-Xylène	μg/l	<0,50	0,5		Conforme à EN-ISO 114
Somme Xylènes	μg/l	n.d.			Conforme à EN-ISO 114
Polychlorobiphényles					
PCB (28)	μg/l	<0,010	0,01		Équivalent à EN-ISO 64
PCB (52)	μg/l	<0,010	0,01		Équivalent à EN-ISO 64
PCB (101)	μg/l	<0,010	0,01		Équivalent à EN-ISO 64
PCB (118)	μg/l	<0,010	0,01		Équivalent à EN-ISO 64
PCB (138)	μg/l	<0,010	0,01		Équivalent à EN-ISO 64
PCB (153)	μg/l	<0,010	0,01		Équivalent à EN-ISO 64
PCB (180)	μg/l	<0,010	0,01		Équivalent à EN-ISO 64
Somme PCB (STI) (ASE)	μg/l	n.d.			Équivalent à EN-ISO 64
Somme 7 PCB (Ballschmiter)	μg/l	n.d.			Équivalent à EN-ISO 64
Composés volatils					
Fraction C5-C6 *	μg/l	<10	10		Méthode interne (mesurage conforme à EN-ISO 10301 e conforme à ISO 11423-1)
Hydrocarbures C6-C8	μg/l	<10	10		ISO 11423-1
Hydrocarbures C8-C10 *	µg/l	<10	10		Méthode interne (mesurage conforme à EN-ISO 10301 e conforme à ISO 11423-1)
Hydrocarbures volatils C6-C10	µg/l	<10	10		Méthode interne (mesuraç conforme à EN-ISO 10301 conforme à ISO 11423-1

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

10.04.2020 Date

N° Client 35004351

RAPPORT D'ANALYSES 933517 - 691278

*		Unité	Résultat	Limit d. Quant.	Incert. Résultat %	Méthode		
symbole «	Hydrocarbures C5-C10 *	µg/l	<10	10		Méthode interne (mesurage conforme à EN-ISO 10301 et conforme à ISO 11423-1)		
	Hydrocarbures totaux							
par le	Hydrocarbures totaux C10-C40	μg/l	<50	50		Équivalent à EN-ISO 9377-2		
	Fraction C10-C12 *	μg/l	<10	10		Équivalent à EN-ISO 9377-2		
signalés	Fraction C12-C16 *	μg/l	<10	10		Équivalent à EN-ISO 9377-2		
gue	Fraction C16-C20 *	μg/l	<5,0	5		Équivalent à EN-ISO 9377-2		
t Si	Fraction C20-C24 *	μg/l	<5,0	5		Équivalent à EN-ISO 9377-2		
sont	Fraction C24-C28 *	μg/l	<5,0	5		Équivalent à EN-ISO 9377-2		
	Fraction C28-C32 *	μg/l	<5,0	5		Équivalent à EN-ISO 9377-2		
dite	Fraction C32-C36 *	μg/l	<5,0	5		Équivalent à EN-ISO 9377-2		
ccrédités	Fraction C36-C40 *	μg/l	<5,0	5		Équivalent à EN-ISO 9377-2		
non a	Le calcul de l'incertitude de mesure combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l'expression de l'incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d'élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance). Les détails concernant l'incertitude de mesure seront fournis sur demande.							
paramètres/résultats	Analyse des nitrates: une teneur en chlorure supérieure à 100 mg / I peut avoir un effet négatif sur la teneur en nitrates. Analyse des nitrites: le chlorure libre peut interférer avec la détermination des nitrites.							
es								

Début des analyses: 06.04.2020 Fin des analyses: 10.04.2020

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

lognenet

accrédités sont

les paramètres/résultats non

-es paramètres indiqués dans ce document sont accrédités selon ISO/IEC 17025

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

BURGEAP (LYON 69) Madame Aurore REFLOCH 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 10.04.2020 N° Client 35004351

signalés par le symbole « * ». **RAPPORT D'ANALYSES 933517 - 691279**

n° Cde 933517 Thizy-les-Bourgs - Eau souterraine - BC20-1663 -

CDMCCE203823 - AURE

N° échant. 691279 Eau

Projet 68509 Thizy-les-Bourgs K3+

Date de validation 06.04.2020 Prélèvement 02.04.2020 Prélèvement par: Client Spécification des échantillons PZ2

Unité Résultat Quant. Résultat % Méthode **Analyses Physico-chimiques** Fluorures (F) 0,17 0,02 +/- 10 Conforme à NEN 6578 mg/l Ammonium-N <0,02 0,02 Conforme à ISO 15923-1 mg/l Chlorures mg/l 27 1 +/- 10 Conforme à ISO 15923-1 Indice phénol μg/l <10 10 Conforme à EN-ISO 14402 Conforme à ISO 15923-1 Nitrates - N mg/l 17 0,05 +/- 10 Nitrites - N 0,02 +/- 10 Conforme à ISO 15923-1 mg/l 0,01 +/- 15 Sulfates Conforme à ISO 15923-1 450 mg/l 1 Conforme à EN 1484 (déterminé 0,3 +/- 5 COT 8,0 mg/l comme CONP)

Limit d.

1

Incert.

Prétraitement pour analyses des métaux

<u> </u>	Minéralisation à l'eau régale				EN ISO 15587-1
2	Métaux				
	Antimoine (Sb) (eau superficielle)	μg/I	<10	10	Digestion conforme à NEN 6961, mesurage conforme à EN-ISO 17294-2(2004)
	Arsenic (As) (eau superficielle)	μg/l	<10	10	Digestion conforme à NEN 6961, mesurage conforme à EN-ISO 17294-2(2004)
	Baryum (Ba) (eau superficielle)	μg/l	76	20	Digestion conforme à NEN 6961, mesurage conforme à EN-ISO 17294-2(2004)
	Cadmium (Cd) (eau superficielle)	μg/l	<0,20	0,2	Digestion conforme à NEN 6961, mesurage conforme à EN-ISO 17294-2(2004)
	Chrome (Cr) (eau superficielle)	μg/l	<4,0	4	Digestion conforme à NEN 6961, mesurage conforme à EN-ISO 17294-2(2004)
5	Cuivre (Cu) (eau superficielle)	μg/l	<4,0	4	Digestion conforme à NEN 6961, mesurage conforme à EN-ISO 17294-2(2004)
Ś	Mercure (Hg) (eau superficielle)	μg/l	<0,1	0,1	Conforme NEN-EN 1483 (2007)
2	Molybdène (Mo) (eau superficielle)	μg/l	<10	10	Digestion conforme à NEN 6961, mesurage conforme à EN-ISO 17294-2(2004)
5	Nickel (Ni) (eau superficielle)	μg/l	<10	10	Digestion conforme à NEN 6961, mesurage conforme à EN-ISO

17294-2(2004)

Filtration métaux

AL-West B.V.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Date 10.04.2020 N° Client 35004351

RAPPORT D'ANALYSES 933517 - 691279

	Unité	Résultat	Limit d. Quant.	Incert. Résultat %	Méthode
Plomb (Pb) (eau superficielle)	µg/l	<10	10		Digestion conforme à NEN 69 mesurage conforme à EN-IS 17294-2(2004)
Sélenium (Se) (eau superficielle) *	µg/l	<15	15		Digestion conforme à NEN 6961, mesurage conforme à EN-ISO 17294-2(2004)
Zinc (Zn) (eau superficielle)	μg/l	6,2	4	+/- 10	Digestion conforme à NEN 69 mesurage conforme à EN-IS 17294-2(2004)
Hydrocarbures Aromatiques	Polycycliques	(ISO)			
Naphtalène	µg/l	<0,010	0,01		EN ISO 17993 (F18)
Acénaphtylène	µg/l	<0,050	0,05		méthode interne
Acénaphtène	µg/l	<0,0050	0,005		EN ISO 17993 (F18
Fluorène	µg/l	<0,0050	0,005		EN ISO 17993 (F18
Phénanthrène	µg/l	<0,0050	0,005		EN ISO 17993 (F18
Anthracène	µg/l	<0,0050	0,005		EN ISO 17993 (F18
Fluoranthène	µg/l	<0,0050	0,005		EN ISO 17993 (F18
Pyrène	µg/l	<0,0050	0,005		EN ISO 17993 (F18
Benzo(a)anthracène	µg/l	<0,0050	0,005		EN ISO 17993 (F18
Chrysène	μg/l	<0,0050	0,005		EN ISO 17993 (F18
Benzo(b)fluoranthène	μg/l	<0,0050	0,005		EN ISO 17993 (F18
Benzo(k)fluoranthène	μg/l	<0,0050	0,005		EN ISO 17993 (F18
Benzo(a)pyrène	μg/l	<0,0050	0,005		EN ISO 17993 (F18
Dibenzo(ah)anthracène		<0,0050	0,005		EN ISO 17993 (F18
	μg/l				EN ISO 17993 (F18
Benzo(g,h,i)pérylène	µg/l	<0,0050	0,005		,
Indéno(1,2,3-cd)pyrène	µg/l	<0,0050	0,005		EN ISO 17993 (F18
Somme HAP (16 EPA)	μg/l	n.d.			EN ISO 17993 (F18
Composés aromatiques		0.0	0.0		Conforms > FN ICO 4446
Benzène Falsa a	µg/l	<0,2	0,2		Conforme à EN-ISO 1142
<u>Foluène</u>	µg/l	<0,5	0,5		Conforme à EN-ISO 1142
Ethylbenzène	µg/l	<0,5	0,5		Conforme à EN-ISO 1142
m,p-Xylène	µg/l	<0,2	0,2		Conforme à EN-ISO 1142
o-Xylène	µg/l	<0,50	0,5		Conforme à EN-ISO 1142
Somme Xylènes	μg/l	n.d.			Conforme à EN-ISO 1142
Polychlorobiphényles					
PCB (28)	µg/l	<0,010	0,01		Équivalent à EN-ISO 64
PCB (52)	μg/l	<0,010	0,01		Équivalent à EN-ISO 64
PCB (101)	μg/l	<0,010	0,01		Équivalent à EN-ISO 64
PCB (118)	μg/l	<0,010	0,01		Équivalent à EN-ISO 64
PCB (138)	μg/l	<0,010	0,01		Équivalent à EN-ISO 64
PCB (153)	μg/l	<0,010	0,01		Équivalent à EN-ISO 64
PCB (180)	μg/l	<0,010	0,01		Équivalent à EN-ISO 64
Somme PCB (STI) (ASE)	μg/l	n.d.			Équivalent à EN-ISO 64
Somme 7 PCB (Ballschmiter)	μg/l	n.d.			Équivalent à EN-ISO 64
Composés volatils					
Fraction C5-C6 *	μg/l	<10	10		Méthode interne (mesurage conforme à EN-ISO 10301 et conforme à ISO 11423-1)
Hydrocarbures C6-C8	μg/l	<10	10		ISO 11423-1
Hydrocarbures C8-C10 *	μg/l	<10	10		Méthode interne (mesurage conforme à EN-ISO 10301 et conforme à ISO 11423-1)
Hydrocarbures volatils C6-C10	μg/l	<10	10		Méthode interne (mesurag conforme à EN-ISO 10301 conforme à ISO 11423-1

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

Date 10.04.2020

N° Client 35004351

RAPPORT D'ANALYSES 933517 - 691279

*		Unité	Résultat	Limit d. Quant.	Incert. Résultat %	Méthode		
par le symbole «	Hydrocarbures C5-C10 *	µg/l	<10	10		Méthode interne (mesurage conforme à EN-ISO 10301 et conforme à ISO 11423-1)		
	Hydrocarbures totaux							
	Hydrocarbures totaux C10-C40	μg/l	<50	50		Équivalent à EN-ISO 9377-2		
	Fraction C10-C12 *	μg/l	<10	10		Équivalent à EN-ISO 9377-2		
signalés	Fraction C12-C16 *	μg/l	12	10	+/- 28	Équivalent à EN-ISO 9377-2		
gus	Fraction C16-C20 *	µg/l	<5,0	5		Équivalent à EN-ISO 9377-2		
t Si	Fraction C20-C24 *	µg/l	<5,0	5		Équivalent à EN-ISO 9377-2		
sont	Fraction C24-C28 *	μg/l	<5,0	5		Équivalent à EN-ISO 9377-2		
	Fraction C28-C32 *	μg/l	<5,0	5		Équivalent à EN-ISO 9377-2		
dite	Fraction C32-C36 *	μg/l	<5,0	5		Équivalent à EN-ISO 9377-2		
accrédités	Fraction C36-C40 *	μg/l	<5,0	5		Équivalent à EN-ISO 9377-2		
s/résultats non ac	Le calcul de l' incertitude de mesure combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance). Les détails concernant l'incertitude de mesure seront fournis sur demande.							
paramètres	Analyse des nitrates: une teneur en chlorure supérieure à 100 mg / l peut avoir un effet négatif sur la teneur en nitrates. Analyse des nitrites: le chlorure libre peut interférer avec la détermination des nitrites.							
les	Début des analyses: 06.04.2020 Fin des analyses: 10.04.2020							

lognenet

Début des analyses: 06.04.2020 Fin des analyses: 10.04.2020

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle